1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\bayesian-optimization.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_bayesian-optimization.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_bayesian-optimization.py:
==================================
Bayesian optimization with `skopt`
==================================
Gilles Louppe, Manoj Kumar July 2016.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Problem statement
-----------------
We are interested in solving
.. math::
x^* = arg \\min_x f(x)
under the constraints that
- :math:`f` is a black box for which no closed form is known
(nor its gradients);
- :math:`f` is expensive to evaluate;
- and evaluations of :math:`y = f(x)` may be noisy.
**Disclaimer.** If you do not have these constraints, then there
is certainly a better optimization algorithm than Bayesian optimization.
This example uses :class:`plots.plot_gaussian_process` which is available
since version 0.8.
Bayesian optimization loop
--------------------------
For :math:`t=1:T`:
1. Given observations :math:`(x_i, y_i=f(x_i))` for :math:`i=1:t`, build a
probabilistic model for the objective :math:`f`. Integrate out all
possible true functions, using Gaussian process regression.
2. optimize a cheap acquisition/utility function :math:`u` based on the
posterior distribution for sampling the next point.
:math:`x_{t+1} = arg \\min_x u(x)`
Exploit uncertainty to balance exploration against exploitation.
3. Sample the next observation :math:`y_{t+1}` at :math:`x_{t+1}`.
Acquisition functions
---------------------
Acquisition functions :math:`u(x)` specify which sample :math:`x`: should be
tried next:
- Expected improvement (default):
:math:`-EI(x) = -\\mathbb{E} [f(x) - f(x_t^+)]`
- Lower confidence bound: :math:`LCB(x) = \\mu_{GP}(x) + \\kappa \\sigma_{GP}(x)`
- Probability of improvement: :math:`-PI(x) = -P(f(x) \\geq f(x_t^+) + \\kappa)`
where :math:`x_t^+` is the best point observed so far.
In most cases, acquisition functions provide knobs (e.g., :math:`\\kappa`) for
controlling the exploration-exploitation trade-off.
- Search in regions where :math:`\\mu_{GP}(x)` is high (exploitation)
- Probe regions where uncertainty :math:`\\sigma_{GP}(x)` is high (exploration)
.. GENERATED FROM PYTHON SOURCE LINES 67-77
.. code-block:: Python
print(__doc__)
import numpy as np
np.random.seed(237)
import matplotlib.pyplot as plt
from skopt.plots import plot_gaussian_process
.. GENERATED FROM PYTHON SOURCE LINES 78-82
Toy example
-----------
Let assume the following noisy function :math:`f`:
.. GENERATED FROM PYTHON SOURCE LINES 82-90
.. code-block:: Python
noise_level = 0.1
def f(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level
.. GENERATED FROM PYTHON SOURCE LINES 91-94
**Note.** In `skopt`, functions :math:`f` are assumed to take as input a 1D
vector :math:`x`: represented as an array-like and to return a scalar
:math:`f(x)`:.
.. GENERATED FROM PYTHON SOURCE LINES 94-115
.. code-block:: Python
# Plot f(x) + contours
x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = [f(x_i, noise_level=0.0) for x_i in x]
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(
np.concatenate([x, x[::-1]]),
np.concatenate(
(
[fx_i - 1.9600 * noise_level for fx_i in fx],
[fx_i + 1.9600 * noise_level for fx_i in fx[::-1]],
)
),
alpha=0.2,
fc="r",
ec="None",
)
plt.legend()
plt.grid()
plt.show()
.. image-sg:: /auto_examples/images/sphx_glr_bayesian-optimization_001.png
:alt: bayesian optimization
:srcset: /auto_examples/images/sphx_glr_bayesian-optimization_001.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 116-118
Bayesian optimization based on gaussian process regression is implemented in
:class:`gp_minimize` and can be carried out as follows:
.. GENERATED FROM PYTHON SOURCE LINES 118-131
.. code-block:: Python
from skopt import gp_minimize
res = gp_minimize(
f, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
acq_func="EI", # the acquisition function
n_calls=15, # the number of evaluations of f
n_random_starts=5, # the number of random initialization points
noise=0.1**2, # the noise level (optional)
random_state=1234,
) # the random seed
.. GENERATED FROM PYTHON SOURCE LINES 132-133
Accordingly, the approximated minimum is found to be:
.. GENERATED FROM PYTHON SOURCE LINES 133-136
.. code-block:: Python
f"x^*={res.x[0]:.4f}, f(x^*)={res.fun:.4f}"
.. rst-class:: sphx-glr-script-out
.. code-block:: none
'x^*=-0.3552, f(x^*)=-1.0079'
.. GENERATED FROM PYTHON SOURCE LINES 137-148
For further inspection of the results, attributes of the `res` named tuple
provide the following information:
- `x` [float]: location of the minimum.
- `fun` [float]: function value at the minimum.
- `models`: surrogate models used for each iteration.
- `x_iters` [array]:
location of function evaluation for each iteration.
- `func_vals` [array]: function value for each iteration.
- `space` [Space]: the optimization space.
- `specs` [dict]: parameters passed to the function.
.. GENERATED FROM PYTHON SOURCE LINES 148-151
.. code-block:: Python
print(res)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
fun: -1.007919274002016
x: [-0.35518414273753307]
func_vals: [ 3.716e-02 6.739e-03 ... 8.157e-03 -7.976e-01]
x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836], [1.0854396754496047], [1.4426790855107496], [0.9579248468740365], [-0.4515808656811222], [-0.6859481043850504], [-0.35518414273753307], [-0.29315377717222235], [-0.32099415298782463], [-2.0], [2.0], [-1.3373742019079444], [-0.24784228664930108]]
models: [GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775)]
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
random_state: RandomState(MT19937)
specs: args: func: <function f at 0x0000020BD78EB060>
dimensions: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')])
base_estimator: GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, random_state=822569775)
n_calls: 15
n_random_starts: 5
n_initial_points: 10
initial_point_generator: random
acq_func: EI
acq_optimizer: auto
x0: None
y0: None
random_state: RandomState(MT19937)
verbose: False
callback: None
n_points: 10000
n_restarts_optimizer: 5
xi: 0.01
kappa: 1.96
n_jobs: 1
model_queue_size: None
space_constraint: None
function: base_minimize
.. GENERATED FROM PYTHON SOURCE LINES 152-155
Together these attributes can be used to visually inspect the results of the
minimization, such as the convergence trace or the acquisition function at
the last iteration:
.. GENERATED FROM PYTHON SOURCE LINES 155-160
.. code-block:: Python
from skopt.plots import plot_convergence
plot_convergence(res)
.. image-sg:: /auto_examples/images/sphx_glr_bayesian-optimization_002.png
:alt: Convergence plot
:srcset: /auto_examples/images/sphx_glr_bayesian-optimization_002.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
.. code-block:: none
<Axes: title={'center': 'Convergence plot'}, xlabel='Number of calls $n$', ylabel='$\\min f(x)$ after $n$ calls'>
.. GENERATED FROM PYTHON SOURCE LINES 161-165
Let us now visually examine
1. The approximation of the fit gp model to the original function.
2. The acquisition values that determine the next point to be queried.
.. GENERATED FROM PYTHON SOURCE LINES 165-173
.. code-block:: Python
plt.rcParams["figure.figsize"] = (8, 14)
def f_wo_noise(x):
return f(x, noise_level=0)
.. GENERATED FROM PYTHON SOURCE LINES 174-175
Plot the 5 iterations following the 5 random points
.. GENERATED FROM PYTHON SOURCE LINES 175-214
.. code-block:: Python
for n_iter in range(5):
# Plot true function.
plt.subplot(5, 2, 2 * n_iter + 1)
if n_iter == 0:
show_legend = True
else:
show_legend = False
ax = plot_gaussian_process(
res,
n_calls=n_iter,
objective=f_wo_noise,
noise_level=noise_level,
show_legend=show_legend,
show_title=False,
show_next_point=False,
show_acq_func=False,
)
ax.set_ylabel("")
ax.set_xlabel("")
# Plot EI(x)
plt.subplot(5, 2, 2 * n_iter + 2)
ax = plot_gaussian_process(
res,
n_calls=n_iter,
show_legend=show_legend,
show_title=False,
show_mu=False,
show_acq_func=True,
show_observations=False,
show_next_point=True,
)
ax.set_ylabel("")
ax.set_xlabel("")
plt.show()
.. image-sg:: /auto_examples/images/sphx_glr_bayesian-optimization_003.png
:alt: bayesian optimization
:srcset: /auto_examples/images/sphx_glr_bayesian-optimization_003.png
:class: sphx-glr-single-img
.. GENERATED FROM PYTHON SOURCE LINES 215-232
The first column shows the following:
1. The true function.
2. The approximation to the original function by the gaussian process model
3. How sure the GP is about the function.
The second column shows the acquisition function values after every
surrogate model is fit. It is possible that we do not choose the global
minimum but a local minimum depending on the minimizer used to minimize
the acquisition function.
At the points closer to the points previously evaluated at, the variance
dips to zero.
Finally, as we increase the number of points, the GP model approaches
the actual function. The final few points are clustered around the minimum
because the GP does not gain anything more by further exploration:
.. GENERATED FROM PYTHON SOURCE LINES 232-239
.. code-block:: Python
plt.rcParams["figure.figsize"] = (6, 4)
# Plot f(x) + contours
_ = plot_gaussian_process(res, objective=f_wo_noise, noise_level=noise_level)
plt.show()
.. image-sg:: /auto_examples/images/sphx_glr_bayesian-optimization_004.png
:alt: x* = -0.3552, f(x*) = -1.0079
:srcset: /auto_examples/images/sphx_glr_bayesian-optimization_004.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (0 minutes 3.907 seconds)
.. _sphx_glr_download_auto_examples_bayesian-optimization.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/bayesian-optimization.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: bayesian-optimization.ipynb <bayesian-optimization.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: bayesian-optimization.py <bayesian-optimization.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|