1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\hyperparameter-optimization.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_hyperparameter-optimization.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_hyperparameter-optimization.py:
============================================
Tuning a scikit-learn estimator with `skopt`
============================================
Gilles Louppe, July 2016
Katie Malone, August 2016
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
If you are looking for a :obj:`sklearn.model_selection.GridSearchCV` replacement checkout
:ref:`sphx_glr_auto_examples_sklearn-gridsearchcv-replacement.py` instead.
Problem statement
=================
Tuning the hyper-parameters of a machine learning model is often carried out
using an exhaustive exploration of (a subset of) the space all hyper-parameter
configurations (e.g., using :obj:`sklearn.model_selection.GridSearchCV`), which
often results in a very time consuming operation.
In this notebook, we illustrate how to couple :class:`gp_minimize` with sklearn's
estimators to tune hyper-parameters using sequential model-based optimisation,
hopefully resulting in equivalent or better solutions, but within fewer
evaluations.
Note: scikit-optimize provides a dedicated interface for estimator tuning via
:class:`BayesSearchCV` class which has a similar interface to those of
:obj:`sklearn.model_selection.GridSearchCV`. This class uses functions of skopt to perform hyperparameter
search efficiently. For example usage of this class, see
:ref:`sphx_glr_auto_examples_sklearn-gridsearchcv-replacement.py`
example notebook.
.. GENERATED FROM PYTHON SOURCE LINES 35-42
.. code-block:: Python
print(__doc__)
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score
.. GENERATED FROM PYTHON SOURCE LINES 43-48
Objective
=========
To tune the hyper-parameters of our model we need to define a model,
decide which parameters to optimize, and define the objective function
we want to minimize.
.. GENERATED FROM PYTHON SOURCE LINES 48-57
.. code-block:: Python
california_housing = fetch_california_housing()
X, y = california_housing.data, california_housing.target
n_features = X.shape[1]
# gradient boosted trees tend to do well on problems like this
reg = GradientBoostingRegressor(n_estimators=50, random_state=0)
.. GENERATED FROM PYTHON SOURCE LINES 58-62
Next, we need to define the bounds of the dimensions of the search space
we want to explore and pick the objective. In this case the cross-validation
mean absolute error of a gradient boosting regressor over the Boston
dataset, as a function of its hyper-parameters.
.. GENERATED FROM PYTHON SOURCE LINES 62-90
.. code-block:: Python
from skopt.space import Integer, Real
from skopt.utils import use_named_args
# The list of hyper-parameters we want to optimize. For each one we define the
# bounds, the corresponding scikit-learn parameter name, as well as how to
# sample values from that dimension (`'log-uniform'` for the learning rate)
space = [
Integer(1, 5, name='max_depth'),
Real(10**-5, 10**0, "log-uniform", name='learning_rate'),
Integer(1, n_features, name='max_features'),
Integer(2, 100, name='min_samples_split'),
Integer(1, 100, name='min_samples_leaf'),
]
# this decorator allows your objective function to receive a the parameters as
# keyword arguments. This is particularly convenient when you want to set
# scikit-learn estimator parameters
@use_named_args(space)
def objective(**params):
reg.set_params(**params)
return -np.mean(
cross_val_score(reg, X, y, cv=5, n_jobs=-1, scoring="neg_mean_absolute_error")
)
.. GENERATED FROM PYTHON SOURCE LINES 91-95
Optimize all the things!
========================
With these two pieces, we are now ready for sequential model-based
optimisation. Here we use gaussian process-based optimisation.
.. GENERATED FROM PYTHON SOURCE LINES 95-102
.. code-block:: Python
from skopt import gp_minimize
res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)
"Best score=%.4f" % res_gp.fun
.. rst-class:: sphx-glr-script-out
.. code-block:: none
'Best score=0.4477'
.. GENERATED FROM PYTHON SOURCE LINES 103-114
.. code-block:: Python
print(
"""Best parameters:
- max_depth=%d
- learning_rate=%.6f
- max_features=%d
- min_samples_split=%d
- min_samples_leaf=%d"""
% (res_gp.x[0], res_gp.x[1], res_gp.x[2], res_gp.x[3], res_gp.x[4])
)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
Best parameters:
- max_depth=5
- learning_rate=0.147511
- max_features=8
- min_samples_split=100
- min_samples_leaf=46
.. GENERATED FROM PYTHON SOURCE LINES 115-117
Convergence plot
================
.. GENERATED FROM PYTHON SOURCE LINES 117-121
.. code-block:: Python
from skopt.plots import plot_convergence
plot_convergence(res_gp)
.. image-sg:: /auto_examples/images/sphx_glr_hyperparameter-optimization_001.png
:alt: Convergence plot
:srcset: /auto_examples/images/sphx_glr_hyperparameter-optimization_001.png
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
.. code-block:: none
<Axes: title={'center': 'Convergence plot'}, xlabel='Number of calls $n$', ylabel='$\\min f(x)$ after $n$ calls'>
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (2 minutes 21.302 seconds)
.. _sphx_glr_download_auto_examples_hyperparameter-optimization.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/hyperparameter-optimization.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: hyperparameter-optimization.ipynb <hyperparameter-optimization.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: hyperparameter-optimization.py <hyperparameter-optimization.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|