1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\interruptible-optimization.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
:ref:`Go to the end <sphx_glr_download_auto_examples_interruptible-optimization.py>`
to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_interruptible-optimization.py:
================================================
Interruptible optimization runs with checkpoints
================================================
Christian Schell, Mai 2018
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
Problem statement
=================
Optimization runs can take a very long time and even run for multiple days.
If for some reason the process has to be interrupted results are irreversibly
lost, and the routine has to start over from the beginning.
With the help of the :class:`callbacks.CheckpointSaver` callback the optimizer's current state
can be saved after each iteration, allowing to restart from that point at any
time.
This is useful, for example,
* if you don't know how long the process will take and cannot hog computational resources forever
* if there might be system failures due to shaky infrastructure (or colleagues...)
* if you want to adjust some parameters and continue with the already obtained results
.. GENERATED FROM PYTHON SOURCE LINES 29-35
.. code-block:: Python
print(__doc__)
import numpy as np
np.random.seed(777)
.. GENERATED FROM PYTHON SOURCE LINES 36-43
Simple example
==============
We will use pretty much the same optimization problem as in the
:ref:`sphx_glr_auto_examples_bayesian-optimization.py`
notebook. Additionally we will instantiate the :class:`callbacks.CheckpointSaver`
and pass it to the minimizer:
.. GENERATED FROM PYTHON SOURCE LINES 43-68
.. code-block:: Python
from skopt import gp_minimize
from skopt.callbacks import CheckpointSaver
noise_level = 0.1
def obj_fun(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level
checkpoint_saver = CheckpointSaver("./checkpoint.pkl", compress=9) # kwargs passed to `skopt.dump`
gp_minimize(
obj_fun, # the function to minimize
[(-20.0, 20.0)], # the bounds on each dimension of x
x0=[-20.0], # the starting point
acq_func="LCB", # the acquisition function (optional)
n_calls=10, # number of evaluations of f including at x0
n_random_starts=3, # the number of random initial points
callback=[checkpoint_saver],
# a list of callbacks including the checkpoint saver
random_state=777,
)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
fun: -0.17524445239614728
x: [-18.660711608230713]
func_vals: [-4.682e-02 -8.228e-02 -6.538e-03 -7.134e-02 9.064e-02
7.662e-02 8.261e-02 -1.324e-01 -1.752e-01 1.002e-01]
x_iters: [[-20.0], [5.857990176187936], [-11.97095004855501], [5.450171667295798], [10.524218484747195], [-17.111120867646253], [7.251301457256783], [-19.16709880389749], [-18.660711608230713], [-18.28429723556215]]
models: [GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735)]
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
random_state: RandomState(MT19937)
specs: args: func: <function obj_fun at 0x0000020BCE5B9940>
dimensions: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
base_estimator: GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735)
n_calls: 10
n_random_starts: 3
n_initial_points: 10
initial_point_generator: random
acq_func: LCB
acq_optimizer: auto
x0: [-20.0]
y0: None
random_state: RandomState(MT19937)
verbose: False
callback: [<skopt.callbacks.CheckpointSaver object at 0x0000020BCF20E710>]
n_points: 10000
n_restarts_optimizer: 5
xi: 0.01
kappa: 1.96
n_jobs: 1
model_queue_size: None
space_constraint: None
function: base_minimize
.. GENERATED FROM PYTHON SOURCE LINES 69-86
Now let's assume this did not finish at once but took some long time: you
started this on Friday night, went out for the weekend and now, Monday
morning, you're eager to see the results. However, instead of the
notebook server you only see a blank page and your colleague Garry
tells you that he had had an update scheduled for Sunday noon – who
doesn't like updates?
:class:`gp_minimize` did not finish, and there is no `res` variable with the
actual results!
Restoring the last checkpoint
=============================
Luckily we employed the :class:`callbacks.CheckpointSaver` and can now restore the latest
result with :class:`skopt.load`
(see :ref:`sphx_glr_auto_examples_store-and-load-results.py` for more
information on that)
.. GENERATED FROM PYTHON SOURCE LINES 86-93
.. code-block:: Python
from skopt import load
res = load('./checkpoint.pkl')
res.fun
.. rst-class:: sphx-glr-script-out
.. code-block:: none
-0.17524445239614728
.. GENERATED FROM PYTHON SOURCE LINES 94-98
Continue the search
===================
The previous results can then be used to continue the optimization process:
.. GENERATED FROM PYTHON SOURCE LINES 98-120
.. code-block:: Python
x0 = res.x_iters
y0 = res.func_vals
# To ensure that the base estimator is loaded properly and that the next
# parameters are new ones:
base_estimator = res.specs['args']['base_estimator']
random_state = res.random_state
gp_minimize(
obj_fun, # the function to minimize
[(-20.0, 20.0)], # the bounds on each dimension of x
base_estimator=base_estimator, # warm-started base-estimator from checkpoint
x0=x0, # already examined values for x
y0=y0, # observed values for x0
acq_func="LCB", # the acquisition function (optional)
n_calls=10, # number of evaluations of f including at x0
n_random_starts=3, # the number of random initialization points
callback=[checkpoint_saver],
random_state=random_state,
)
.. rst-class:: sphx-glr-script-out
.. code-block:: none
fun: -0.17524445239614728
x: [-18.660711608230713]
func_vals: [-4.682e-02 -8.228e-02 ... 9.148e-02 2.650e-02]
x_iters: [[-20.0], [5.857990176187936], [-11.97095004855501], [5.450171667295798], [10.524218484747195], [-17.111120867646253], [7.251301457256783], [-19.16709880389749], [-18.660711608230713], [-18.28429723556215], [-4.89536560655587], [-13.817289687225252], [6.9752035588202865], [-19.137121427347815], [-18.893981612139648], [-19.36136150292367], [-18.95171384338072], [6.383980575487712], [-18.82159785473173], [-19.373206975288387]]
models: [GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735), GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735)]
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
random_state: RandomState(MT19937)
specs: args: func: <function obj_fun at 0x0000020BCE5B9940>
dimensions: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')])
base_estimator: GaussianProcessRegressor(kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, random_state=655685735)
n_calls: 10
n_random_starts: 3
n_initial_points: 10
initial_point_generator: random
acq_func: LCB
acq_optimizer: auto
x0: [[-20.0], [5.857990176187936], [-11.97095004855501], [5.450171667295798], [10.524218484747195], [-17.111120867646253], [7.251301457256783], [-19.16709880389749], [-18.660711608230713], [-18.28429723556215]]
y0: [-4.682e-02 -8.228e-02
-6.538e-03 -7.134e-02
9.064e-02 7.662e-02
8.261e-02 -1.324e-01
-1.752e-01 1.002e-01]
random_state: RandomState(MT19937)
verbose: False
callback: [<skopt.callbacks.CheckpointSaver object at 0x0000020BCF20E710>]
n_points: 10000
n_restarts_optimizer: 5
xi: 0.01
kappa: 1.96
n_jobs: 1
model_queue_size: None
space_constraint: None
function: base_minimize
.. GENERATED FROM PYTHON SOURCE LINES 121-133
Possible problems
=================
* **changes in search space:** You can use this technique to interrupt
the search, tune the search space and continue the optimization. Note
that the optimizers will complain if `x0` contains parameter values not
covered by the dimension definitions, so in many cases shrinking the
search space will not work without deleting the offending runs from
`x0` and `y0`.
* see :ref:`sphx_glr_auto_examples_store-and-load-results.py`
for more information on how the results get saved and possible caveats
.. rst-class:: sphx-glr-timing
**Total running time of the script:** (0 minutes 1.988 seconds)
.. _sphx_glr_download_auto_examples_interruptible-optimization.py:
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-example
.. container:: binder-badge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/holgern/scikit-optimize/master?urlpath=lab/tree/notebooks/auto_examples/interruptible-optimization.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: interruptible-optimization.ipynb <interruptible-optimization.ipynb>`
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: interruptible-optimization.py <interruptible-optimization.py>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_
|