1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
"""
==============================================
Use different base estimators for optimization
==============================================
Sigurd Carlen, September 2019.
Reformatted by Holger Nahrstaedt 2020
.. currentmodule:: skopt
To use different base_estimator or create a regressor with different parameters,
we can create a regressor object and set it as kernel.
This example uses :class:`plots.plot_gaussian_process` which is available
since version 0.8.
"""
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
from skopt import Optimizer
from skopt.plots import plot_gaussian_process
#############################################################################
# Toy example
# -----------
#
# Let assume the following noisy function :math:`f`:
noise_level = 0.1
# Our 1D toy problem, this is the function we are trying to
# minimize
def objective(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level
def objective_wo_noise(x):
return objective(x, noise_level=0)
#############################################################################
opt_gp = Optimizer(
[(-2.0, 2.0)],
base_estimator="GP",
n_initial_points=5,
acq_optimizer="sampling",
random_state=42,
)
#############################################################################
def plot_optimizer(res, n_iter, max_iters=5):
if n_iter == 0:
show_legend = True
else:
show_legend = False
ax = plt.subplot(max_iters, 2, 2 * n_iter + 1)
# Plot GP(x) + contours
ax = plot_gaussian_process(
res,
ax=ax,
objective=objective_wo_noise,
noise_level=noise_level,
show_legend=show_legend,
show_title=True,
show_next_point=False,
show_acq_func=False,
)
ax.set_ylabel("")
ax.set_xlabel("")
if n_iter < max_iters - 1:
ax.get_xaxis().set_ticklabels([])
# Plot EI(x)
ax = plt.subplot(max_iters, 2, 2 * n_iter + 2)
ax = plot_gaussian_process(
res,
ax=ax,
noise_level=noise_level,
show_legend=show_legend,
show_title=False,
show_next_point=True,
show_acq_func=True,
show_observations=False,
show_mu=False,
)
ax.set_ylabel("")
ax.set_xlabel("")
if n_iter < max_iters - 1:
ax.get_xaxis().set_ticklabels([])
#############################################################################
# GP kernel
# ---------
fig = plt.figure()
fig.suptitle("Standard GP kernel")
for i in range(10):
next_x = opt_gp.ask()
f_val = objective(next_x)
res = opt_gp.tell(next_x, f_val)
if i >= 5:
plot_optimizer(res, n_iter=i - 5, max_iters=5)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.plot()
#############################################################################
# Test different kernels
# ----------------------
from sklearn.gaussian_process.kernels import (
RBF,
ConstantKernel,
DotProduct,
ExpSineSquared,
Matern,
RationalQuadratic,
)
from skopt.learning import GaussianProcessRegressor
from skopt.learning.gaussian_process.kernels import ConstantKernel, Matern
# Gaussian process with Matérn kernel as surrogate model
kernels = [
(1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)), "RBF"),
(1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1), "RationalQuadratic"),
(1.0
* ExpSineSquared(
length_scale=1.0,
periodicity=3.0,
length_scale_bounds=(0.1, 10.0),
periodicity_bounds=(1.0, 10.0),
), "ExpSineSquared"),
# (ConstantKernel(0.1, (0.01, 10.0))
# * (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.1, 10.0)) ** 2), "ConstantKernel"),
(1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0), nu=2.5), "Matern"),
]
#############################################################################
for kernel, label in kernels:
gpr = GaussianProcessRegressor(
kernel=kernel,
alpha=noise_level**2,
normalize_y=True,
noise="gaussian",
n_restarts_optimizer=2,
)
opt = Optimizer(
[(-2.0, 2.0)],
base_estimator=gpr,
n_initial_points=5,
acq_optimizer="sampling",
random_state=42,
)
fig = plt.figure()
fig.suptitle(label)
for i in range(10):
next_x = opt.ask()
f_val = objective(next_x)
res = opt.tell(next_x, f_val)
if i >= 5:
plot_optimizer(res, n_iter=i - 5, max_iters=5)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
|