1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
|
import numbers
import warnings
from collections.abc import Iterable
import numpy as np
import yaml
from scipy.stats.distributions import randint, rv_discrete, uniform
from sklearn.utils import check_random_state
try:
# Syntax from sklearn 1.5.0 onwards
from sklearn.utils._optional_dependencies import check_pandas_support
except ImportError:
from sklearn.utils import check_pandas_support
from .transformers import (
CategoricalEncoder,
Identity,
LabelEncoder,
LogN,
Normalize,
Pipeline,
StringEncoder,
)
# helper class to be able to print [1, ..., 4] instead of [1, '...', 4]
class _Ellipsis:
def __repr__(self):
return '...'
def _transpose_list_array(x):
"""Transposes a list matrix."""
n_dims = len(x)
assert n_dims > 0
n_samples = len(x[0])
rows = [None] * n_samples
for i in range(n_samples):
r = [None] * n_dims
for j in range(n_dims):
r[j] = x[j][i]
rows[i] = r
return rows
def check_dimension(dimension, transform=None):
"""Turn a provided dimension description into a dimension object.
Checks that the provided dimension falls into one of the
supported types. For a list of supported types, look at
the documentation of ``dimension`` below.
If ``dimension`` is already a ``Dimension`` instance, return it.
Parameters
----------
dimension : Dimension
Search space Dimension.
Each search dimension can be defined either as:
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
- a 2-, 3- or 4-tuple, for `Real` and `Integer` dimensions, of
the form ``(low, high [, prior [, base]])`` (values in square
brackets are optional). If both ``low`` and ``high`` are integral
numbers (as per the `number.Integral`), a `Integer` dimension is
returned, else a `Real` dimension is returned.
- any iterable for `Categorical` dimension
.. note::
For a transitionary period, the old behavior is retained. This
means tuple, list and array currently all undergo dimension
inference as describe in the tuple entry above. If no `Integer`
or `Real` dimension can be inferred, a `Categorical` is returned.
This behavior will be tightened to the above description in an
upcoming version, and a warning is raised if the upcoming inference
would differ from the current behavior.
transform : "identity", "normalize", "string", "label", "onehot" optional
- For `Categorical` dimensions, the following transformations are
supported.
- "onehot" (default) one-hot transformation of the original space.
- "label" integer transformation of the original space
- "string" string transformation of the original space.
- "identity" same as the original space.
- For `Real` and `Integer` dimensions, the following transformations
are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between 0 and 1.
Returns
-------
dimension : Dimension
Dimension instance.
"""
old_dim = _check_dimension_old(dimension, transform=transform)
try:
with warnings.catch_warnings(record=True) as warning_list:
new_dim = _check_dimension(dimension, transform=transform)
except Exception as err:
new_dim = f"<{err.__class__.__name__}: {err}>"
if new_dim != old_dim:
warning_msg = ""
if warning_list:
formatted_warning = "; ".join(
f"<{w.filename}:{w.lineno}: " f"{w.category}: {w.message}>"
for w in warning_list
)
warning_msg = f" (with warnings: {formatted_warning})"
warnings.warn(
f"Dimension {dimension!r} was inferred to {old_dim}. In "
"upcoming versions of scikit-optimize, it will be "
f"inferred to {new_dim}{warning_msg}. See the "
"documentation of the check_dimension function for the "
"upcoming API."
)
return old_dim
def _check_dimension(dimension, transform=None):
if isinstance(dimension, Dimension):
return dimension
if isinstance(dimension, tuple) and 2 <= len(dimension) <= 4:
low, high, *args = dimension
# Check that optional distribution and base have correct types
if (not args or isinstance(args[0], str)) and (
len(args) < 2 or isinstance(args[1], int)
):
# Infer an Integer if both bounds are Integral
if isinstance(low, numbers.Integral) and isinstance(high, numbers.Integral):
return Integer(int(low), int(high), *args, transform=transform)
# Infer a Real if both bounds are Real numbers
elif isinstance(low, numbers.Real) and isinstance(high, numbers.Real):
return Real(float(low), float(high), *args, transform=transform)
# warn if falling back on Categorical for tuples that look like they
# might be an error, because there is more than one type in them
if len(set(map(type, dimension))) > 1:
warnings.warn(
f"{dimension!r} was inferred to a Categorical "
"object, but looks like a tuple for an Integer or "
"Real dimension that was miss-spelled. Pass a list "
"or a Categorical object to suppress this warning.",
UserWarning,
)
if isinstance(dimension, Iterable):
return Categorical(dimension, transform=transform)
# Unconditionned so handle all cases that make it here
raise ValueError(
f"Invalid dimension {dimension!r}. See the "
"documentation of check_dimension for supported values."
)
def _check_dimension_old(dimension, transform=None):
if isinstance(dimension, Dimension):
return dimension
if not isinstance(dimension, (list, tuple, np.ndarray)):
raise ValueError(
f"Invalid dimension {dimension!r}. See the "
"documentation of check_dimension for supported "
"values."
)
# A `Dimension` described by a single value is assumed to be
# a `Categorical` dimension. This can be used in `BayesSearchCV`
# to define subspaces that fix one value, e.g. to choose the
# model type, see "sklearn-gridsearchcv-replacement.py"
# for examples.
if len(dimension) == 1:
return Categorical(dimension, transform=transform)
if len(dimension) == 2:
if any(
isinstance(d, (str, bool)) or isinstance(d, np.bool_) for d in dimension
):
return Categorical(dimension, transform=transform)
elif all(isinstance(dim, numbers.Integral) for dim in dimension):
return Integer(*map(int, dimension), transform=transform)
elif all(isinstance(dim, numbers.Real) for dim in dimension):
return Real(*map(float, dimension), transform=transform)
else:
raise ValueError(
f"Invalid dimension {dimension!r}. See the "
"documentation of check_dimension for supported "
"values."
)
if len(dimension) == 3:
if all(
isinstance(dim, numbers.Integral) for dim in dimension[:2]
) and dimension[2] in [
"uniform",
"log-uniform",
]:
return Integer(
*map(int, dimension[:2]), *dimension[2:], transform=transform
)
elif all(isinstance(dim, numbers.Real) for dim in dimension[:2]) and dimension[
2
] in ["uniform", "log-uniform"]:
return Real(*map(float, dimension[:2]), *dimension[2:], transform=transform)
else:
return Categorical(dimension, transform=transform)
if len(dimension) == 4:
if (
all([isinstance(dim, numbers.Integral) for dim in dimension[:2]])
and dimension[2] == "log-uniform"
and isinstance(dimension[3], int)
):
return Integer(
*map(int, dimension[:2]), *dimension[2:], transform=transform
)
elif (
all([isinstance(dim, numbers.Real) for dim in dimension[:2]])
and dimension[2] == "log-uniform"
and isinstance(dimension[3], int)
):
return Real(*map(float, dimension[:2]), *dimension[2:], transform=transform)
if len(dimension) > 3:
return Categorical(dimension, transform=transform)
raise ValueError(
f"Invalid dimension {dimension!r}. See the "
"documentation of check_dimension for supported "
"values."
)
class Dimension:
"""Base class for search space dimensions."""
prior = None
def rvs(self, n_samples=1, random_state=None):
"""Draw random samples.
Parameters
----------
n_samples : int or None
The number of samples to be drawn.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
"""
rng = check_random_state(random_state)
samples = self._rvs.rvs(size=n_samples, random_state=rng)
return self.inverse_transform(samples)
def transform(self, X):
"""Transform samples form the original space to a warped space."""
return self.transformer.transform(X)
def inverse_transform(self, Xt):
"""Inverse transform samples from the warped space back into the original
space."""
return self.transformer.inverse_transform(Xt)
def set_transformer(self):
raise NotImplementedError
@property
def size(self):
return 1
@property
def transformed_size(self):
return 1
@property
def bounds(self):
raise NotImplementedError
@property
def is_constant(self):
raise NotImplementedError
@property
def transformed_bounds(self):
raise NotImplementedError
@property
def name(self):
return self._name
@name.setter
def name(self, value):
if isinstance(value, str) or value is None:
self._name = value
else:
raise ValueError("Dimension's name must be either string or None.")
def _uniform_inclusive(loc=0.0, scale=1.0):
# like scipy.stats.distributions but inclusive of `high`
# XXX scale + 1. might not actually be a float after scale if
# XXX scale is very large.
return uniform(loc=loc, scale=np.nextafter(scale, scale + 1.0))
class Real(Dimension):
"""Search space dimension that can take on any real value.
Parameters
----------
low : float
Lower bound (inclusive).
high : float
Upper bound (inclusive).
prior : "uniform" or "log-uniform", default="uniform"
Distribution to use when sampling random points for this dimension.
- If `"uniform"`, points are sampled uniformly between the lower
and upper bounds.
- If `"log-uniform"`, points are sampled uniformly between
`log(lower, base)` and `log(upper, base)` where log
has base `base`.
base : int
The logarithmic base to use for a log-uniform prior.
- Default 10, otherwise commonly 2.
transform : "identity", "normalize", optional
The following transformations are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between
0 and 1.
name : str or None
Name associated with the dimension, e.g., "learning rate".
dtype : str or dtype, default=float
float type which will be used in inverse_transform,
can be float.
"""
def __init__(
self,
low,
high,
prior="uniform",
base=10,
transform=None,
name=None,
dtype=float,
):
if high <= low:
raise ValueError(
"the lower bound {} has to be less than the"
" upper bound {}".format(low, high)
)
if prior not in ["uniform", "log-uniform"]:
raise ValueError(
"prior should be 'uniform' or 'log-uniform'" " got {}".format(prior)
)
if prior == 'log-uniform' and low * high <= 0:
raise ValueError(
"search space should not contain 0 when" " using log-uniform prior"
)
self.low = low
self.high = high
self.prior = prior
self.base = base
self.log_base = np.log10(base)
self.name = name
self.dtype = dtype
self._rvs = None
self.transformer = None
self.transform_ = transform
if isinstance(self.dtype, str) and self.dtype not in [
'float',
'float16',
'float32',
'float64',
]:
raise ValueError(
"dtype must be 'float', 'float16', 'float32'"
"or 'float64'"
" got {}".format(self.dtype)
)
elif isinstance(self.dtype, type) and not np.issubdtype(
self.dtype, np.floating
):
raise ValueError(
"dtype must be a np.floating subtype;" " got {}".format(self.dtype)
)
if transform is None:
transform = "identity"
self.set_transformer(transform)
def set_transformer(self, transform="identity"):
"""Define rvs and transformer spaces.
Parameters
----------
transform : str
Can be 'normalize' or 'identity'
"""
self.transform_ = transform
if self.transform_ not in ["normalize", "identity"]:
raise ValueError(
"transform should be 'normalize' or 'identity'"
" got {}".format(self.transform_)
)
# XXX: The _rvs is for sampling in the transformed space.
# The rvs on Dimension calls inverse_transform on the points sampled
# using _rvs
if self.transform_ == "normalize":
# set upper bound to next float after 1. to make the numbers
# inclusive of upper edge
self._rvs = _uniform_inclusive(0.0, 1.0)
if self.prior == "uniform":
self.transformer = Pipeline(
[Identity(), Normalize(self.low, self.high)]
)
else:
self.transformer = Pipeline(
[
LogN(self.base),
Normalize(
np.log10(self.low) / self.log_base,
np.log10(self.high) / self.log_base,
),
]
)
else:
if self.prior == "uniform":
self._rvs = _uniform_inclusive(self.low, self.high - self.low)
self.transformer = Identity()
else:
self._rvs = _uniform_inclusive(
np.log10(self.low) / self.log_base,
np.log10(self.high) / self.log_base
- np.log10(self.low) / self.log_base,
)
self.transformer = LogN(self.base)
def __eq__(self, other):
return (
type(self) is type(other)
and np.allclose([self.low], [other.low])
and np.allclose([self.high], [other.high])
and self.prior == other.prior
and self.transform_ == other.transform_
)
def __repr__(self):
return "Real(low={}, high={}, prior='{}', transform='{}')".format(
self.low, self.high, self.prior, self.transform_
)
def inverse_transform(self, Xt):
"""Inverse transform samples from the warped space back into the original
space."""
inv_transform = super().inverse_transform(Xt)
if isinstance(inv_transform, list):
inv_transform = np.array(inv_transform)
inv_transform = np.clip(inv_transform, self.low, self.high).astype(self.dtype)
if self.dtype == float or self.dtype == 'float':
# necessary, otherwise the type is converted to a numpy type
return getattr(inv_transform, "tolist", lambda: inv_transform)()
else:
return inv_transform
@property
def bounds(self):
return (self.low, self.high)
@property
def is_constant(self):
return self.low == self.high
def __contains__(self, point):
if isinstance(point, list):
point = np.array(point)
return self.low <= point <= self.high
@property
def transformed_bounds(self):
if self.transform_ == "normalize":
return 0.0, 1.0
else:
if self.prior == "uniform":
return self.low, self.high
else:
return np.log10(self.low), np.log10(self.high)
def distance(self, a, b):
"""Compute distance between point `a` and `b`.
Parameters
----------
a : float
First point.
b : float
Second point.
"""
if not (a in self and b in self):
raise RuntimeError(
"Can only compute distance for values within "
"the space, not %s and %s." % (a, b)
)
return abs(a - b)
class Integer(Dimension):
"""Search space dimension that can take on integer values.
Parameters
----------
low : int
Lower bound (inclusive).
high : int
Upper bound (inclusive).
prior : "uniform" or "log-uniform", default="uniform"
Distribution to use when sampling random integers for
this dimension.
- If `"uniform"`, integers are sampled uniformly between the lower
and upper bounds.
- If `"log-uniform"`, integers are sampled uniformly between
`log(lower, base)` and `log(upper, base)` where log
has base `base`.
base : int
The logarithmic base to use for a log-uniform prior.
- Default 10, otherwise commonly 2.
transform : "identity", "normalize", optional
The following transformations are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between
0 and 1.
name : str or None
Name associated with dimension, e.g., "number of trees".
dtype : str or dtype, default=np.int64
integer type which will be used in inverse_transform,
can be int, np.int16, np.uint32, np.int32, np.int64 (default).
When set to int, `inverse_transform` returns a list instead of
a numpy array
"""
def __init__(
self,
low,
high,
prior="uniform",
base=10,
transform=None,
name=None,
dtype=np.int64,
):
if high <= low:
raise ValueError(
"the lower bound {} has to be less than the"
" upper bound {}".format(low, high)
)
if prior not in ["uniform", "log-uniform"]:
raise ValueError(
"prior should be 'uniform' or 'log-uniform'" " got {}".format(prior)
)
if prior == 'log-uniform' and low * high <= 0:
raise ValueError(
"search space should not contain 0" " when using log-uniform prior"
)
self.low = low
self.high = high
self.prior = prior
self.base = base
self.log_base = np.log10(base)
self.name = name
self.dtype = dtype
self.transform_ = transform
self._rvs = None
self.transformer = None
if isinstance(self.dtype, str) and self.dtype not in [
'int',
'int8',
'int16',
'int32',
'int64',
'uint8',
'uint16',
'uint32',
'uint64',
]:
raise ValueError(
"dtype must be 'int', 'int8', 'int16',"
"'int32', 'int64', 'uint8',"
"'uint16', 'uint32', or"
"'uint64', but got {}".format(self.dtype)
)
elif isinstance(self.dtype, type) and self.dtype not in [
int,
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
]:
raise ValueError(
"dtype must be 'int', 'np.int8', 'np.int16',"
"'np.int32', 'np.int64', 'np.uint8',"
"'np.uint16', 'np.uint32', or"
"'np.uint64', but got {}".format(self.dtype)
)
if transform is None:
transform = "identity"
self.set_transformer(transform)
def set_transformer(self, transform="identity"):
"""Define _rvs and transformer spaces.
Parameters
----------
transform : str
Can be 'normalize' or 'identity'
"""
self.transform_ = transform
if transform not in ["normalize", "identity"]:
raise ValueError(
"transform should be 'normalize' or 'identity'"
" got {}".format(self.transform_)
)
if self.transform_ == "normalize":
self._rvs = _uniform_inclusive(0.0, 1.0)
if self.prior == "uniform":
self.transformer = Pipeline(
[Identity(), Normalize(self.low, self.high, is_int=True)]
)
else:
self.transformer = Pipeline(
[
LogN(self.base),
Normalize(
np.log10(self.low) / self.log_base,
np.log10(self.high) / self.log_base,
),
]
)
else:
if self.prior == "uniform":
self._rvs = randint(self.low, self.high + 1)
self.transformer = Identity()
else:
self._rvs = _uniform_inclusive(
np.log10(self.low) / self.log_base,
np.log10(self.high) / self.log_base
- np.log10(self.low) / self.log_base,
)
self.transformer = LogN(self.base)
def __eq__(self, other):
return (
type(self) is type(other)
and np.allclose([self.low], [other.low])
and np.allclose([self.high], [other.high])
)
def __repr__(self):
return "Integer(low={}, high={}, prior='{}', transform='{}')".format(
self.low, self.high, self.prior, self.transform_
)
def inverse_transform(self, Xt):
"""Inverse transform samples from the warped space back into the original
space."""
# The concatenation of all transformed dimensions makes Xt to be
# of type float, hence the required cast back to int.
inv_transform = super().inverse_transform(Xt)
if isinstance(inv_transform, list):
inv_transform = np.array(inv_transform)
inv_transform = np.clip(inv_transform, self.low, self.high)
if self.dtype == int or self.dtype == 'int':
# necessary, otherwise the type is converted to a numpy type
value = np.round(inv_transform).astype(self.dtype)
return getattr(value, "tolist", lambda: value)()
else:
return np.round(inv_transform).astype(self.dtype)
@property
def bounds(self):
return (self.low, self.high)
@property
def is_constant(self):
return self.low == self.high
def __contains__(self, point):
if isinstance(point, list):
point = np.array(point)
return self.low <= point <= self.high
@property
def transformed_bounds(self):
if self.transform_ == "normalize":
return 0.0, 1.0
else:
return (self.low, self.high)
def distance(self, a, b):
"""Compute distance between point `a` and `b`.
Parameters
----------
a : int
First point.
b : int
Second point.
"""
if not (a in self and b in self):
raise RuntimeError(
"Can only compute distance for values within "
"the space, not %s and %s." % (a, b)
)
return abs(a - b)
class Categorical(Dimension):
"""Search space dimension that can take on categorical values.
Parameters
----------
categories : list, shape=(n_categories,)
Sequence of possible categories.
prior : list, shape=(categories,), default=None
Prior probabilities for each category. By default all categories
are equally likely.
transform : "onehot", "string", "identity", "label", default="onehot"
- "identity", the transformed space is the same as the original
space.
- "string", the transformed space is a string encoded
representation of the original space.
- "label", the transformed space is a label encoded
representation (integer) of the original space.
- "onehot", the transformed space is a one-hot encoded
representation of the original space.
name : str or None
Name associated with dimension, e.g., "colors".
"""
def __init__(self, categories, prior=None, transform=None, name=None):
self.categories = tuple(categories)
self.name = name
if transform is None:
transform = "onehot"
self.transform_ = transform
self.transformer = None
self._rvs = None
self.prior = prior
if prior is None:
self.prior_ = np.tile(1.0 / len(self.categories), len(self.categories))
else:
self.prior_ = prior
self.set_transformer(transform)
def set_transformer(self, transform="onehot"):
"""Define _rvs and transformer spaces.
Parameters
----------
transform : str
Can be 'normalize', 'onehot', 'string', 'label', or 'identity'
"""
self.transform_ = transform
if transform not in ["identity", "onehot", "string", "normalize", "label"]:
raise ValueError(
"Expected transform to be 'identity', 'string',"
"'label' or 'onehot' got {}".format(transform)
)
if transform == "onehot":
self.transformer = CategoricalEncoder()
self.transformer.fit(self.categories)
elif transform == "string":
self.transformer = StringEncoder()
self.transformer.fit(self.categories)
elif transform == "label":
self.transformer = LabelEncoder()
self.transformer.fit(self.categories)
elif transform == "normalize":
self.transformer = Pipeline(
[
LabelEncoder(list(self.categories)),
Normalize(0, len(self.categories) - 1, is_int=True),
]
)
else:
self.transformer = Identity()
self.transformer.fit(self.categories)
if transform == "normalize":
self._rvs = _uniform_inclusive(0.0, 1.0)
else:
# XXX check that sum(prior) == 1
self._rvs = rv_discrete(values=(range(len(self.categories)), self.prior_))
def __eq__(self, other):
return (
type(self) is type(other)
and self.categories == other.categories
and np.allclose(self.prior_, other.prior_)
)
def __repr__(self):
if len(self.categories) > 7:
cats = self.categories[:3] + (_Ellipsis(),) + self.categories[-3:]
else:
cats = self.categories
if self.prior is not None and len(self.prior) > 7:
prior = self.prior[:3] + [_Ellipsis()] + self.prior[-3:]
else:
prior = self.prior
return f"Categorical(categories={cats}, prior={prior})"
def inverse_transform(self, Xt):
"""Inverse transform samples from the warped space back into the original
space."""
# The concatenation of all transformed dimensions makes Xt to be
# of type float, hence the required cast back to int.
inv_transform = super().inverse_transform(Xt)
if isinstance(inv_transform, list):
inv_transform = np.array(inv_transform)
return inv_transform
def rvs(self, n_samples=None, random_state=None):
choices = self._rvs.rvs(size=n_samples, random_state=random_state)
if isinstance(choices, numbers.Integral):
return self.categories[choices]
elif self.transform_ == "normalize" and isinstance(choices, float):
return self.inverse_transform([(choices)])
elif self.transform_ == "normalize":
return self.inverse_transform(list(choices))
else:
return [self.categories[c] for c in choices]
@property
def transformed_size(self):
if self.transform_ == "onehot":
size = len(self.categories)
# when len(categories) == 2, CategoricalEncoder outputs a
# single value
return size if size != 2 else 1
return 1
@property
def bounds(self):
return self.categories
@property
def is_constant(self):
return len(self.categories) <= 1
def __contains__(self, point):
return point in self.categories
@property
def transformed_bounds(self):
if self.transformed_size == 1:
return 0.0, 1.0
else:
return [(0.0, 1.0) for i in range(self.transformed_size)]
def distance(self, a, b):
"""Compute distance between category `a` and `b`.
As categories have no order the distance between two points is one
if a != b and zero otherwise.
Parameters
----------
a : category
First category.
b : category
Second category.
"""
if not (a in self and b in self):
raise RuntimeError(
"Can only compute distance for values within"
" the space, not {} and {}.".format(a, b)
)
return 1 if a != b else 0
class Space:
"""Initialize a search space from given specifications.
Parameters
----------
dimensions : list, shape=(n_dims,)
List of search space dimensions.
Each search dimension can be defined either as
- a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(lower_bound, upper_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
.. note::
The upper and lower bounds are inclusive for `Integer`
dimensions.
constraint : callable or None, default: None
Constraint function. Should take a single list of parameters
(i.e. a point in space) and return True if the point satisfies
the constraints.
If None, the space is not conditionally constrained.
"""
def __init__(self, dimensions, constraint=None):
self.dimensions = [check_dimension(dim) for dim in dimensions]
if constraint is None and isinstance(dimensions, Space):
constraint = dimensions.constraint
assert constraint is None or callable(constraint)
self.constraint = constraint
def __eq__(self, other):
return all([a == b for a, b in zip(self.dimensions, other.dimensions)])
def __repr__(self):
if len(self.dimensions) > 31:
dims = self.dimensions[:15] + [_Ellipsis()] + self.dimensions[-15:]
else:
dims = self.dimensions
return "Space([{}])".format(',\n '.join(map(str, dims)))
def __iter__(self):
return iter(self.dimensions)
@property
def dimension_names(self):
"""Names of all the dimensions in the search-space."""
index = 0
names = []
for dim in self.dimensions:
if dim.name is None:
names.append("X_%d" % index)
else:
names.append(dim.name)
index += 1
return names
@dimension_names.setter
def dimension_names(self, names):
"""Sets the names of all dimension objects via list of names.
Parameters
----------
names : list of str
List of names. Must be the same length as self.dimensions.
"""
if len(names) != len(self.dimensions):
raise ValueError("`names` must be the same length as " "`self.dimensions`.")
for dim, name in zip(self.dimensions, names):
dim.name = name
@property
def is_real(self):
"""Returns true if all dimensions are Real."""
return all([isinstance(dim, Real) for dim in self.dimensions])
@classmethod
def from_yaml(cls, yml_path, namespace=None):
"""Create Space from yaml configuration file.
Parameters
----------
yml_path : str
Full path to yaml configuration file, example YaML below:
Space:
- Integer:
low: -5
high: 5
- Categorical:
categories:
- a
- b
- Real:
low: 1.0
high: 5.0
prior: log-uniform
namespace : str, default=None
Namespace within configuration file to use, will use first
namespace if not provided
Returns
-------
space : Space
Instantiated Space object
"""
with open(yml_path, 'rb') as f:
config = yaml.safe_load(f)
dimension_classes = {
'real': Real,
'integer': Integer,
'categorical': Categorical,
}
# Extract space options for configuration file
if isinstance(config, dict):
if namespace is None:
options = next(iter(config.values()))
else:
options = config[namespace]
elif isinstance(config, list):
options = config
else:
raise TypeError('YaML does not specify a list or dictionary')
# Populate list with Dimension objects
dimensions = []
for option in options:
key = next(iter(option.keys()))
# Make configuration case insensitive
dimension_class = key.lower()
values = {k.lower(): v for k, v in option[key].items()}
if dimension_class in dimension_classes:
# Instantiate Dimension subclass and add it to the list
dimension = dimension_classes[dimension_class](**values)
dimensions.append(dimension)
space = cls(dimensions=dimensions)
return space
@classmethod
def from_df(cls, df, priors=None, bases=None, transforms=None):
"""Create Space from Pandas DataFrame object.
Dimensions will be inferred from the column type in the Pandas
DataFrame. Real and Integer dimensions will be set from the minimum and
maximum of their corresponding columns. Category dimensions will be
constructed from the unique values present in the column.
Note: requires `pandas` installation.
Parameters
----------
df : `pandas.DataFrame`
A Pandas `DataFrame` object
priors : dict, default=None
A mapping of `DataFrame` column names to corresponding priors
bases : dict, default=None
A mapping of `DataFrame` column names to corresponding bases
transforms : dict, default=None
A mapping of `DataFrame` column names to corresponding transforms
Returns
-------
space : Space
Instantiated Space object
"""
pd = check_pandas_support("from_df")
if priors is None:
priors = {}
if bases is None:
bases = {}
if transforms is None:
transforms = {}
# Helper method to infer Dimension from the dtype of a Pandas Series.
def _check_series_dimension(series, priors, bases, transforms):
kwargs = {}
name = series.name
if name in priors:
kwargs['prior'] = priors[name]
if name in bases:
kwargs['base'] = bases[name]
if name in transforms:
kwargs['transform'] = transforms[name]
kwargs['name'] = str(name) if name is not None else None
if pd.api.types.is_float_dtype(series.dtype):
return Real(series.min(), series.max(), **kwargs)
elif pd.api.types.is_integer_dtype(series.dtype):
return Integer(series.min(), series.max(), **kwargs)
else:
return Categorical(series.unique(), **kwargs)
dimensions = [
_check_series_dimension(df[col_name], priors, bases, transforms)
for col_name in df.columns
]
return cls(dimensions)
def rvs(self, n_samples=1, random_state=None):
"""Draw random samples.
The samples are in the original space. They need to be transformed
before being passed to a model or minimizer by `space.transform()`.
Parameters
----------
n_samples : int, default=1
Number of samples to be drawn from the space.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
Returns
-------
points : list of lists, shape=(n_points, n_dims)
Points sampled from the space.
"""
rng = check_random_state(random_state)
points = []
for _ in range(10000):
# Draw
columns = []
for dim in self.dimensions:
columns.append(dim.rvs(n_samples=n_samples, random_state=rng))
# Transpose
rows = _transpose_list_array(columns)
# Filter
if self.constraint is not None:
rows = [row for row in rows if self.constraint(row)]
# If we have enough valid samples
points.extend(rows)
if len(points) >= n_samples:
break
else:
raise RuntimeError(
'Could not find enough valid samples in constrained '
'space. Please check that the constraint allows for '
'valid samples to be drawn.'
)
return points[:n_samples]
def set_transformer(self, transform):
"""Sets the transformer of all dimension objects to `transform`
Parameters
----------
transform : str or list of str
Sets all transformer,, when `transform` is a string.
Otherwise, transform must be a list with strings with
the same length as `dimensions`
"""
# Transform
for j in range(self.n_dims):
if isinstance(transform, list):
self.dimensions[j].set_transformer(transform[j])
else:
self.dimensions[j].set_transformer(transform)
def set_transformer_by_type(self, transform, dim_type):
"""Sets the transformer of `dim_type` objects to `transform`
Parameters
----------
transform : str
Sets all transformer of type `dim_type` to `transform`
dim_type : type
Can be `skopt.space.Real`, `skopt.space.Integer` or
`skopt.space.Categorical`
"""
# Transform
for j in range(self.n_dims):
if isinstance(self.dimensions[j], dim_type):
self.dimensions[j].set_transformer(transform)
def get_transformer(self):
"""Returns all transformers as list."""
return [self.dimensions[j].transform_ for j in range(self.n_dims)]
def transform(self, X):
"""Transform samples from the original space into a warped space.
Note: this transformation is expected to be used to project samples
into a suitable space for numerical optimization.
Parameters
----------
X : list of lists, shape=(n_samples, n_dims)
The samples to transform.
Returns
-------
Xt : array of floats, shape=(n_samples, transformed_n_dims)
The transformed samples.
"""
# Pack by dimension
columns = []
for _ in self.dimensions:
columns.append([])
for i in range(len(X)):
for j in range(self.n_dims):
columns[j].append(X[i][j])
# Transform
for j in range(self.n_dims):
columns[j] = self.dimensions[j].transform(columns[j])
# Repack as an array
Xt = np.hstack([np.asarray(c).reshape((len(X), -1)) for c in columns])
return Xt
def inverse_transform(self, Xt):
"""Inverse transform samples from the warped space back to the original space.
Parameters
----------
Xt : array of floats, shape=(n_samples, transformed_n_dims)
The samples to inverse transform.
Returns
-------
X : list of lists, shape=(n_samples, n_dims)
The original samples.
"""
# Inverse transform
columns = []
start = 0
Xt = np.asarray(Xt)
for j in range(self.n_dims):
dim = self.dimensions[j]
offset = dim.transformed_size
if offset == 1:
columns.append(dim.inverse_transform(Xt[:, start]))
else:
columns.append(dim.inverse_transform(Xt[:, start : start + offset]))
start += offset
# Transpose
return _transpose_list_array(columns)
@property
def n_dims(self):
"""The dimensionality of the original space."""
return len(self.dimensions)
@property
def transformed_n_dims(self):
"""The dimensionality of the warped space."""
return sum([dim.transformed_size for dim in self.dimensions])
@property
def bounds(self):
"""The dimension bounds, in the original space."""
b = []
for dim in self.dimensions:
if dim.size == 1:
b.append(dim.bounds)
else:
b.extend(dim.bounds)
return b
def __contains__(self, point):
"""Check that `point` is within the bounds of the space."""
for component, dim in zip(point, self.dimensions):
if component not in dim:
return False
if self.constraint is not None:
return bool(self.constraint(point))
return True
def __getitem__(self, dimension_names):
"""Lookup and return the search-space dimension with the given name.
This allows for dict-like lookup of dimensions, for example:
`space['foo']` returns the dimension named 'foo' if it exists,
otherwise `None` is returned.
It also allows for lookup of a list of dimension-names, for example:
`space[['foo', 'bar']]` returns the two dimensions named
'foo' and 'bar' if they exist.
Parameters
----------
dimension_names : str or list(str)
Name of a single search-space dimension (str).
List of names for search-space dimensions (list(str)).
Returns
-------
dims tuple (index, Dimension), list(tuple(index, Dimension)), \
(None, None)
A single search-space dimension with the given name,
or a list of search-space dimensions with the given names.
"""
def _get(dimension_name):
"""Helper-function for getting a single dimension."""
index = 0
# Get the index of the search-space dimension using its name.
for dim in self.dimensions:
if dimension_name == dim.name:
return (index, dim)
elif dimension_name == index:
return (index, dim)
index += 1
return (None, None)
if isinstance(dimension_names, (str, int)):
# Get a single search-space dimension.
dims = _get(dimension_name=dimension_names)
elif isinstance(dimension_names, (list, tuple)):
# Get a list of search-space dimensions.
# Note that we do not check whether the names are really strings.
dims = [_get(dimension_name=name) for name in dimension_names]
else:
msg = (
"Dimension name should be either string or"
"list of strings, but got {}."
)
raise ValueError(msg.format(type(dimension_names)))
return dims
@property
def transformed_bounds(self):
"""The dimension bounds, in the warped space."""
b = []
for dim in self.dimensions:
if dim.transformed_size == 1:
b.append(dim.transformed_bounds)
else:
b.extend(dim.transformed_bounds)
return b
@property
def is_categorical(self):
"""Space contains exclusively categorical dimensions."""
return all([isinstance(dim, Categorical) for dim in self.dimensions])
@property
def is_partly_categorical(self):
"""Space contains any categorical dimensions."""
return any([isinstance(dim, Categorical) for dim in self.dimensions])
@property
def n_constant_dimensions(self):
"""Returns the number of constant dimensions which have zero degree of freedom,
e.g. an Integer dimensions with (0., 0.) as bounds."""
n = 0
for dim in self.dimensions:
if dim.is_constant:
n += 1
return n
def distance(self, point_a, point_b):
"""Compute distance between two points in this space.
Parameters
----------
point_a : array
First point.
point_b : array
Second point.
"""
distance = 0.0
for a, b, dim in zip(point_a, point_b, self.dimensions):
distance += dim.distance(a, b)
return distance
|