1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
import numpy as np
from sklearn.preprocessing import LabelBinarizer
class Transformer:
"""Base class for all 1-D transformers."""
def fit(self, X):
return self
def transform(self, X):
raise NotImplementedError
def inverse_transform(self, X):
raise NotImplementedError
class Identity(Transformer):
"""Identity transform."""
def transform(self, X):
return X
def inverse_transform(self, Xt):
return Xt
class StringEncoder(Transformer):
"""StringEncoder transform.
The transform will cast everything to a string and the inverse
transform will cast to the type defined in dtype.
"""
def __init__(self, dtype=str):
super().__init__()
self.dtype = dtype
def fit(self, X):
"""Fit a list or array of categories. All elements must be from the same type.
Parameters
----------
X : array-like, shape=(n_categories,)
List of categories.
"""
if len(X) > 0:
self.dtype = type(X[0])
def transform(self, X):
"""Transform an array of categories to a string encoded representation.
Parameters
----------
X : array-like, shape=(n_samples,)
List of categories.
Returns
-------
Xt : array-like, shape=(n_samples,)
The string encoded categories.
"""
return [str(x) for x in X]
def inverse_transform(self, Xt):
"""Inverse transform string encoded categories back to their original
representation.
Parameters
----------
Xt : array-like, shape=(n_samples,)
String encoded categories.
Returns
-------
X : array-like, shape=(n_samples,)
The original categories.
"""
return [self.dtype(x) for x in Xt]
class LogN(Transformer):
"""Base N logarithm transform."""
def __init__(self, base):
self._base = base
def transform(self, X):
return np.log10(np.asarray(X, dtype=float)) / np.log10(self._base)
def inverse_transform(self, Xt):
return self._base ** np.asarray(Xt, dtype=float)
class CategoricalEncoder(Transformer):
"""OneHotEncoder that can handle categorical variables."""
def __init__(self):
"""Convert labeled categories into one-hot encoded features."""
self._lb = LabelBinarizer()
def fit(self, X):
"""Fit a list or array of categories.
Parameters
----------
X : array-like, shape=(n_categories,)
List of categories.
"""
self.mapping_ = {v: i for i, v in enumerate(X)}
self.inverse_mapping_ = {i: v for v, i in self.mapping_.items()}
self._lb.fit([self.mapping_[v] for v in X])
self.n_classes = len(self._lb.classes_)
return self
def transform(self, X):
"""Transform an array of categories to a one-hot encoded representation.
Parameters
----------
X : array-like, shape=(n_samples,)
List of categories.
Returns
-------
Xt : array-like, shape=(n_samples, n_categories)
The one-hot encoded categories.
"""
return self._lb.transform([self.mapping_[v] for v in X])
def inverse_transform(self, Xt):
"""Inverse transform one-hot encoded categories back to their original
representation.
Parameters
----------
Xt : array-like, shape=(n_samples, n_categories)
One-hot encoded categories.
Returns
-------
X : array-like, shape=(n_samples,)
The original categories.
"""
Xt = np.asarray(Xt)
return [self.inverse_mapping_[i] for i in self._lb.inverse_transform(Xt)]
class LabelEncoder(Transformer):
"""LabelEncoder that can handle categorical variables."""
def __init__(self, X=None):
if X is not None:
self.fit(X)
def fit(self, X):
"""Fit a list or array of categories.
Parameters
----------
X : array-like, shape=(n_categories,)
List of categories.
"""
X = np.asarray(X)
if X.dtype == object:
self.mapping_ = {v: i for i, v in enumerate(X)}
else:
i = 0
self.mapping_ = {}
_, indexes = np.unique(X, return_index=True)
for index in sorted(indexes):
self.mapping_[X[index]] = i
i += 1
self.inverse_mapping_ = {i: v for v, i in self.mapping_.items()}
return self
def transform(self, X):
"""Transform an array of categories to a one-hot encoded representation.
Parameters
----------
X : array-like, shape=(n_samples,)
List of categories.
Returns
-------
Xt : array-like, shape=(n_samples, n_categories)
The integer categories.
"""
X = np.asarray(X)
return [self.mapping_[v] for v in X]
def inverse_transform(self, Xt):
"""Inverse transform integer categories back to their original representation.
Parameters
----------
Xt : array-like, shape=(n_samples, n_categories)
Integer categories.
Returns
-------
X : array-like, shape=(n_samples,)
The original categories.
"""
if isinstance(Xt, (float, np.float64)):
Xt = [Xt]
else:
Xt = np.asarray(Xt)
return [self.inverse_mapping_[int(np.round(i))] for i in Xt]
class Normalize(Transformer):
"""Scales each dimension into the interval [0, 1].
Parameters
----------
low : float
Lower bound.
high : float
Higher bound.
is_int : bool, default=False
Round and cast the return value of `inverse_transform` to integer. Set
to `True` when applying this transform to integers.
"""
def __init__(self, low, high, is_int=False):
self.low = float(low)
self.high = float(high)
self.is_int = is_int
self._eps = 1e-8
def transform(self, X):
X = np.asarray(X)
if self.is_int:
if np.any(np.round(X) > self.high):
raise ValueError(
"All integer values should" "be less than %f" % self.high
)
if np.any(np.round(X) < self.low):
raise ValueError(
"All integer values should" "be greater than %f" % self.low
)
else:
if np.any(X > self.high + self._eps):
raise ValueError("All values should" "be less than %f" % self.high)
if np.any(X < self.low - self._eps):
raise ValueError("All values should" "be greater than %f" % self.low)
if (self.high - self.low) == 0.0:
return X * 0.0
if self.is_int:
return (np.round(X).astype(int) - self.low) / (self.high - self.low)
else:
return (X - self.low) / (self.high - self.low)
def inverse_transform(self, X):
X = np.asarray(X)
if np.any(X > 1.0 + self._eps):
raise ValueError("All values should be less than 1.0")
if np.any(X < 0.0 - self._eps):
raise ValueError("All values should be greater than 0.0")
X_orig = X * (self.high - self.low) + self.low
if self.is_int:
return np.round(X_orig).astype(int)
return X_orig
class Pipeline(Transformer):
"""A lightweight pipeline to chain transformers.
Parameters
----------
transformers : list
A list of Transformer instances.
"""
def __init__(self, transformers):
self.transformers = list(transformers)
for transformer in self.transformers:
if not isinstance(transformer, Transformer):
raise ValueError(
"Provided transformers should be a Transformer "
"instance. Got %s" % transformer
)
def fit(self, X):
for transformer in self.transformers:
transformer.fit(X)
return self
def transform(self, X):
for transformer in self.transformers:
X = transformer.transform(X)
return X
def inverse_transform(self, X):
for transformer in self.transformers[::-1]:
X = transformer.inverse_transform(X)
return X
|