1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
from functools import partial
from itertools import product
import numpy as np
import pytest
from numpy.testing import (
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises,
)
from scipy.optimize import OptimizeResult
from skopt import dummy_minimize, forest_minimize, gbrt_minimize, gp_minimize
from skopt.benchmarks import bench1, bench4, bench5, branin
from skopt.callbacks import DeltaXStopper, DeltaYStopper
from skopt.space import Space
# dummy_minimize does not support same parameters so
# treated separately
MINIMIZERS = [gp_minimize]
ACQUISITION = ["LCB", "PI", "EI"]
ACQ_FUNCS_PS = ["PIps", "EIps"]
for est, acq in product(["ET", "RF"], ACQUISITION):
MINIMIZERS.append(partial(forest_minimize, base_estimator=est, acq_func=acq))
for acq in ACQUISITION:
MINIMIZERS.append(partial(gbrt_minimize, acq_func=acq))
def check_minimizer_api(result, n_calls, n_models=None):
# assumes the result was produced on branin
assert isinstance(result.space, Space)
if n_models is not None:
assert_equal(len(result.models), n_models)
assert_equal(len(result.x_iters), n_calls)
assert_array_equal(result.func_vals.shape, (n_calls,))
assert isinstance(result.x, list)
assert_equal(len(result.x), 2)
assert isinstance(result.x_iters, list)
for n in range(n_calls):
assert isinstance(result.x_iters[n], list)
assert_equal(len(result.x_iters[n]), 2)
assert isinstance(result.func_vals[n], float)
assert_almost_equal(result.func_vals[n], branin(result.x_iters[n]))
assert_array_equal(result.x, result.x_iters[np.argmin(result.func_vals)])
assert_almost_equal(result.fun, branin(result.x))
assert isinstance(result.specs, dict)
assert "args" in result.specs
assert "function" in result.specs
def check_minimizer_bounds(result, n_calls):
# no values should be below or above the bounds
eps = 10e-9 # check for assert_array_less OR equal
assert_array_less(result.x_iters, np.tile([10 + eps, 15 + eps], (n_calls, 1)))
assert_array_less(np.tile([-5 - eps, 0 - eps], (n_calls, 1)), result.x_iters)
def check_result_callable(res):
"""Check that the result instance is set right at every callable call."""
assert isinstance(res, OptimizeResult)
assert_equal(len(res.x_iters), len(res.func_vals))
assert_equal(np.min(res.func_vals), res.fun)
def call_single(res):
pass
@pytest.mark.fast_test
@pytest.mark.parametrize("verbose", [True, False])
@pytest.mark.parametrize("call", [call_single, [call_single, check_result_callable]])
def test_minimizer_api_dummy_minimize(verbose, call):
# dummy_minimize is special as it does not support all parameters
# and does not fit any models
n_calls = 7
result = dummy_minimize(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_calls=n_calls,
random_state=1,
verbose=verbose,
callback=call,
)
assert result.models == []
check_minimizer_api(result, n_calls)
check_minimizer_bounds(result, n_calls)
with pytest.raises(ValueError):
dummy_minimize(lambda x: x, [[-5, 10]])
@pytest.mark.slow_test
@pytest.mark.parametrize("verbose", [True, False])
@pytest.mark.parametrize("call", [call_single, [call_single, check_result_callable]])
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_minimizer_api(verbose, call, minimizer):
n_calls = 7
n_initial_points = 3
n_models = n_calls - n_initial_points + 1
result = minimizer(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_initial_points=n_initial_points,
n_calls=n_calls,
random_state=1,
verbose=verbose,
callback=call,
)
check_minimizer_api(result, n_calls, n_models)
check_minimizer_bounds(result, n_calls)
with pytest.raises(ValueError):
minimizer(lambda x: x, [[-5, 10]])
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_minimizer_api_random_only(minimizer):
# no models should be fit as we only evaluate at random points
n_calls = 5
n_initial_points = 5
result = minimizer(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_initial_points=n_initial_points,
n_calls=n_calls,
random_state=1,
)
check_minimizer_api(result, n_calls)
check_minimizer_bounds(result, n_calls)
@pytest.mark.slow_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_fixed_random_states(minimizer):
# check that two runs produce exactly same results, if not there is a
# random state somewhere that is not reproducible
n_calls = 4
n_initial_points = 2
space = [(-5.0, 10.0), (0.0, 15.0)]
result1 = minimizer(
branin,
space,
n_calls=n_calls,
n_initial_points=n_initial_points,
random_state=1,
)
dimensions = [(-5.0, 10.0), (0.0, 15.0)]
result2 = minimizer(
branin,
dimensions,
n_calls=n_calls,
n_initial_points=n_initial_points,
random_state=1,
)
assert_array_almost_equal(result1.x_iters, result2.x_iters)
assert_array_almost_equal(result1.func_vals, result2.func_vals)
@pytest.mark.slow_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_minimizer_with_space(minimizer):
# check we can pass a Space instance as dimensions argument and get same
# result
n_calls = 4
n_initial_points = 2
space = Space([(-5.0, 10.0), (0.0, 15.0)])
space_result = minimizer(
branin,
space,
n_calls=n_calls,
n_initial_points=n_initial_points,
random_state=1,
)
check_minimizer_api(space_result, n_calls)
check_minimizer_bounds(space_result, n_calls)
dimensions = [(-5.0, 10.0), (0.0, 15.0)]
result = minimizer(
branin,
dimensions,
n_calls=n_calls,
n_initial_points=n_initial_points,
random_state=1,
)
assert_array_almost_equal(space_result.x_iters, result.x_iters)
assert_array_almost_equal(space_result.func_vals, result.func_vals)
@pytest.mark.slow_test
@pytest.mark.parametrize("n_initial_points", [0, 1, 2, 3, 4])
@pytest.mark.parametrize(
"optimizer_func", [gp_minimize, forest_minimize, gbrt_minimize]
)
def test_init_vals_and_models(n_initial_points, optimizer_func):
# test how many models are fitted when using initial points, y0 values
# and random starts
space = [(-5.0, 10.0), (0.0, 15.0)]
x0 = [[1, 2], [3, 4], [5, 6]]
y0 = list(map(branin, x0))
n_calls = 7
optimizer = partial(optimizer_func, n_initial_points=n_initial_points)
res = optimizer(branin, space, x0=x0, y0=y0, random_state=0, n_calls=n_calls)
assert_equal(len(res.models), n_calls - n_initial_points + 1)
@pytest.mark.slow_test
@pytest.mark.parametrize("n_initial_points", [0, 1, 2, 3, 4])
@pytest.mark.parametrize(
"optimizer_func", [gp_minimize, forest_minimize, gbrt_minimize]
)
def test_init_points_and_models(n_initial_points, optimizer_func):
# test how many models are fitted when using initial points and random
# starts (no y0 in this case)
space = [(-5.0, 10.0), (0.0, 15.0)]
x0 = [[1, 2], [3, 4], [5, 6]]
n_calls = 7
optimizer = partial(optimizer_func, n_initial_points=n_initial_points)
res = optimizer(branin, space, x0=x0, random_state=0, n_calls=n_calls)
assert_equal(len(res.models), n_calls - len(x0) - n_initial_points + 1)
@pytest.mark.slow_test
@pytest.mark.parametrize("n_initial_points", [2, 5])
@pytest.mark.parametrize(
"optimizer_func", [gp_minimize, forest_minimize, gbrt_minimize]
)
def test_init_vals(n_initial_points, optimizer_func):
space = [(-5.0, 10.0), (0.0, 15.0)]
x0 = [[1, 2], [3, 4], [5, 6]]
n_calls = len(x0) + n_initial_points + 1
optimizer = partial(optimizer_func, n_initial_points=n_initial_points)
check_init_vals(optimizer, branin, space, x0, n_calls)
@pytest.mark.fast_test
def test_init_vals_dummy_minimize():
space = [(-5.0, 10.0), (0.0, 15.0)]
x0 = [[1, 2], [3, 4], [5, 6]]
n_calls = 10
check_init_vals(dummy_minimize, branin, space, x0, n_calls)
@pytest.mark.slow_test
@pytest.mark.parametrize(
"optimizer",
[
dummy_minimize,
partial(gp_minimize, n_initial_points=3),
partial(forest_minimize, n_initial_points=3),
partial(gbrt_minimize, n_initial_points=3),
],
)
def test_categorical_init_vals(optimizer):
space = [["-2", "-1", "0", "1", "2"]]
x0 = [["0"], ["1"], ["2"]]
n_calls = 6
check_init_vals(optimizer, bench4, space, x0, n_calls)
@pytest.mark.slow_test
@pytest.mark.parametrize(
"optimizer",
[
dummy_minimize,
partial(gp_minimize, n_initial_points=2),
partial(forest_minimize, n_initial_points=2),
partial(gbrt_minimize, n_initial_points=2),
],
)
def test_mixed_spaces(optimizer):
space = [["-2", "-1", "0", "1", "2"], (-2.0, 2.0)]
x0 = [["0", 2.0], ["1", 1.0], ["2", 1.0]]
n_calls = 5
check_init_vals(optimizer, bench5, space, x0, n_calls)
def check_init_vals(optimizer, func, space, x0, n_calls):
y0 = list(map(func, x0))
# testing whether the provided points with their evaluations
# are taken into account
res = optimizer(func, space, x0=x0, y0=y0, random_state=0, n_calls=n_calls)
assert_array_equal(res.x_iters[0 : len(x0)], x0)
assert_array_equal(res.func_vals[0 : len(y0)], y0)
assert_equal(len(res.x_iters), len(x0) + n_calls)
assert_equal(len(res.func_vals), len(x0) + n_calls)
# testing whether the provided points are taken into account
res = optimizer(func, space, x0=x0, random_state=0, n_calls=n_calls)
assert_array_equal(res.x_iters[0 : len(x0)], x0)
assert_array_equal(res.func_vals[0 : len(y0)], y0)
assert_equal(len(res.x_iters), n_calls)
assert_equal(len(res.func_vals), n_calls)
# testing whether providing a single point instead of a list
# of points works correctly
res = optimizer(func, space, x0=x0[0], random_state=0, n_calls=n_calls)
assert_array_equal(res.x_iters[0], x0[0])
assert_array_equal(res.func_vals[0], y0[0])
assert_equal(len(res.x_iters), n_calls)
assert_equal(len(res.func_vals), n_calls)
# testing whether providing a single point and its evaluation
# instead of a list of points and their evaluations works correctly
res = optimizer(func, space, x0=x0[0], y0=y0[0], random_state=0, n_calls=n_calls)
assert_array_equal(res.x_iters[0], x0[0])
assert_array_equal(res.func_vals[0], y0[0])
assert_equal(len(res.x_iters), 1 + n_calls)
assert_equal(len(res.func_vals), 1 + n_calls)
# testing whether it correctly raises an exception when
# the number of input points and the number of evaluations differ
assert_raises(ValueError, dummy_minimize, func, space, x0=x0, y0=[1])
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_invalid_n_calls_arguments(minimizer):
with pytest.raises(ValueError):
minimizer(branin, [(-5.0, 10.0), (0.0, 15.0)], n_calls=0, random_state=1)
with pytest.raises(ValueError):
minimizer(
branin, [(-5.0, 10.0), (0.0, 15.0)], n_initial_points=0, random_state=1
)
# n_calls >= n_initial_points
with pytest.raises(ValueError):
minimizer(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_calls=1,
n_initial_points=10,
random_state=1,
)
# n_calls >= n_initial_points + len(x0)
with pytest.raises(ValueError):
minimizer(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_calls=1,
x0=[[-1, 2], [-3, 3], [2, 5]],
random_state=1,
n_initial_points=7,
)
# n_calls >= n_initial_points
with pytest.raises(ValueError):
minimizer(
branin,
[(-5.0, 10.0), (0.0, 15.0)],
n_calls=1,
x0=[[-1, 2], [-3, 3], [2, 5]],
y0=[2.0, 3.0, 5.0],
random_state=1,
n_initial_points=7,
)
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_repeated_x(minimizer):
with pytest.warns(UserWarning, match="has been evaluated at"):
minimizer(
lambda x: x[0],
dimensions=[[0, 1]],
x0=[[0], [1]],
n_initial_points=0,
n_calls=3,
)
with pytest.warns(UserWarning, match="has been evaluated at"):
minimizer(
bench4,
dimensions=[["0", "1"]],
x0=[["0"], ["1"]],
n_calls=3,
n_initial_points=0,
)
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_consistent_x_iter_dimensions(minimizer):
# check that all entries in x_iters have the same dimensions
# two dmensional problem, bench1 is a 1D function but in this
# instance we do not really care about the objective, could be
# a total dummy
res = minimizer(
bench1,
dimensions=[(0, 1), (2, 3)],
x0=[[0, 2], [1, 2]],
n_calls=3,
n_initial_points=0,
)
assert len({len(x) for x in res.x_iters}) == 1
assert len(res.x_iters[0]) == 2
# one dimensional problem
res = minimizer(
bench1, dimensions=[(0, 1)], x0=[[0], [1]], n_calls=3, n_initial_points=0
)
assert len({len(x) for x in res.x_iters}) == 1
assert len(res.x_iters[0]) == 1
with pytest.raises(RuntimeError):
minimizer(
bench1, dimensions=[(0, 1)], x0=[[0, 1]], n_calls=3, n_initial_points=0
)
with pytest.raises(RuntimeError):
minimizer(bench1, dimensions=[(0, 1)], x0=[0, 1], n_calls=3, n_initial_points=0)
@pytest.mark.slow_test
@pytest.mark.parametrize("minimizer", [gp_minimize, forest_minimize, gbrt_minimize])
def test_early_stopping_delta_x(minimizer):
n_calls = 11
res = minimizer(
bench1,
callback=DeltaXStopper(0.1),
dimensions=[(-1.0, 1.0)],
x0=[[-0.1], [0.1], [-0.9]],
n_calls=n_calls,
n_initial_points=0,
random_state=1,
)
assert len(res.x_iters) < n_calls
@pytest.mark.slow_test
@pytest.mark.parametrize("minimizer", [gp_minimize, forest_minimize, gbrt_minimize])
def test_early_stopping_delta_x_empty_result_object(minimizer):
# check that the callback handles the case of being passed an empty
# results object, e.g. at the start of the optimization loop
n_calls = 15
res = minimizer(
bench1,
callback=DeltaXStopper(0.1),
dimensions=[(-1.0, 1.0)],
n_calls=n_calls,
n_initial_points=2,
random_state=1,
)
assert len(res.x_iters) < n_calls
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", [gp_minimize, forest_minimize, gbrt_minimize])
def test_early_stopping_delta_y(minimizer):
n_calls = 5
res = minimizer(
lambda x: x[0] / 4,
callback=DeltaYStopper(0.6, 2),
dimensions=[(-1.0, 1.0)],
n_calls=n_calls,
n_initial_points=1,
random_state=1,
)
assert len(res.x_iters) == 2
@pytest.mark.fast_test
@pytest.mark.parametrize("minimizer", [gp_minimize, forest_minimize, gbrt_minimize])
def test_early_stopping_delta_y_with_x0(minimizer):
n_calls = 5
res = minimizer(
lambda x: x[0] / 4,
callback=DeltaYStopper(0.6, 2),
dimensions=[(-1.0, 1.0)],
x0=[[-0.5], [0.5]],
n_calls=n_calls,
n_initial_points=0,
random_state=1,
)
assert len(res.x_iters) == 2
@pytest.mark.parametrize("acq_func", ACQ_FUNCS_PS)
@pytest.mark.parametrize("minimizer", [gp_minimize, forest_minimize, gbrt_minimize])
def test_per_second_api(acq_func, minimizer):
def bench1_with_time(x):
return bench1(x), np.abs(x[0])
n_calls = 3
res = minimizer(
bench1_with_time,
[(-2.0, 2.0)],
acq_func=acq_func,
n_calls=n_calls,
n_initial_points=2,
random_state=1,
)
assert len(res.log_time) == n_calls
@pytest.mark.slow_test
@pytest.mark.parametrize("minimizer", MINIMIZERS)
def test_minimizer_space_constraint(minimizer):
n_calls = 4
n_initial_points = 2
def constraint(params):
return (0 < params[0] < 5) and (5 < params[1] < 10)
space = Space([(-5.0, 10.0), (0.0, 15.0)])
result = minimizer(
branin,
space,
n_calls=n_calls,
n_initial_points=n_initial_points,
space_constraint=constraint,
random_state=1,
)
assert all([constraint(params) for params in result.x_iters])
dimensions = [(-5.0, 10.0), (0.0, 15.0)]
result = minimizer(
branin,
dimensions,
n_calls=n_calls,
n_initial_points=n_initial_points,
space_constraint=constraint,
random_state=1,
)
assert all([constraint(params) for params in result.x_iters])
|