File: csv.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (929 lines) | stat: -rw-r--r-- 26,370 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
"""
.. module:: skrf.io.csv

========================================
csv (:mod:`skrf.io.csv`)
========================================

Functions for reading and writing standard csv files
----------------------------------------------------

.. autosummary::
   :toctree: generated/

   read_all_csv
   AgilentCSV


Reading/Writing Agilent
------------------------

.. autosummary::
   :toctree: generated/

   read_pna_csv
   pna_csv_2_ntwks
   pna_csv_2_ntwks3
   pna_csv_2_df

Reading/Writing R&S
--------------------

.. autosummary::
   :toctree: generated/

   read_zva_dat
   read_all_zva_dat
   zva_dat_2_ntwks

Reading/Writing Anritsu VectorStar
-----------------------------------

.. autosummary::
   :toctree: generated/

   vectorstar_csv_2_ntwks
   read_vectorstar_csv


"""
from __future__ import annotations

import os
from warnings import warn

import numpy as np

from .. import mathFunctions as mf
from .. import util
from ..constants import FREQ_UNITS, FrequencyUnitT
from ..frequency import Frequency
from ..network import Network

# delayed imports
# from pandas import Series, Index, DataFrame

def read_pna_csv(filename, *args, **kwargs) -> tuple[str, str, np.ndarray]:
    r"""
    Reads data from a csv file written by an Agilient PNA.

    This function returns a triplet containing the header, comments,
    and data.


    Parameters
    ----------
    filename : str
        the file
    \*args, \*\*kwargs :

    Returns
    -------
    header : str
        The header string, which is the line following the 'BEGIN'
    comments : str
        All lines that begin with a '!'
    data : :class:`numpy.ndarray`
        An array containing the data. The meaning of which depends on
        the header.

    See Also
    --------
    pna_csv_2_ntwks : Reads a csv file which contains s-parameter data

    Examples
    --------
    >>> header, comments, data = rf.read_pna_csv('myfile.csv')
    """
    warn("deprecated", DeprecationWarning, stacklevel=2)
    with open(filename) as fid:
        begin_line = -2
        end_line = -1
        n_END = 0
        comments = ''
        for k,line in enumerate(fid.readlines()):
            if line.startswith('!'):
                comments += line[1:]
            elif line.startswith('BEGIN') and n_END == 0:
                begin_line = k
            elif line.startswith('END'):
                if n_END == 0:
                #first END spotted -> set end_line to read first data block only
                    end_line = k
                #increment n_END to allow for CR correction in genfromtxt
                n_END += 1
            if k == begin_line+1:
                header = line
        footer = k - end_line

    try:
        data = np.genfromtxt(
            filename,
            delimiter = ',',
            skip_header = begin_line + 2,
            skip_footer = footer - (n_END-1)*2,
            **kwargs
            )
    except(ValueError):
        # carriage returns require a doubling of skiplines
        data = np.genfromtxt(
            filename,
            delimiter = ',',
            skip_header = (begin_line + 2)*2,
            skip_footer = footer,
            **kwargs
            )

    # pna uses unicode coding for degree symbol, but we dont need that
    header = header.replace('\xb0','deg').rstrip('\n').rstrip('\r')

    units_dict: dict[str, FrequencyUnitT] = {k.lower(): k for k in FREQ_UNITS.keys()}

    # Get the frequency unit from the header and convert to Hz
    unit_raw = header.split(',')[0].strip('Freq')[1:-1]
    try:
        unit_tmp = unit_raw.lower()
        if unit_tmp in units_dict:
            data[:, 0] *= FREQ_UNITS[units_dict[unit_tmp]]
    except Exception as exc:
        raise ValueError(f"Could not parse frequency unit '{unit_raw}'") from exc

    return header, comments, data

def pna_csv_2_df(filename):
    """
    Reads data from a csv file written by an Agilient PNA as a pandas DataFrame.

    Parameters
    ----------
    filename : string
        filename

    Returns
    -------
    df : `pandas.DataFrame`

    """
    warn("deprecated", DeprecationWarning, stacklevel=2)
    from pandas import DataFrame, Index
    header, comments, d = read_pna_csv(filename)

    names = header.split(',')

    index = Index(d[:,0], name = names[0])
    df=DataFrame({names[k]: d[:,k] for k in range(1,len(names))}, index=index)
    return df

def pna_csv_2_ntwks2(filename, *args, **kwargs):
    warn("deprecated", DeprecationWarning, stacklevel=2)
    df = pna_csv_2_df(filename, *args, **kwargs)
    header, comments, d = read_pna_csv(filename)
    ntwk_dict  = {}
    param_set=set([k[:3] for k in df.columns])
    f = df.index.values
    for param in param_set:
        try:
            s = mf.dbdeg_2_reim(
                df[f'{param} Log Mag(dB)'].values,
                df[f'{param} Phase(deg)'].values,
                )
        except(KeyError):
            s = mf.dbdeg_2_reim(
                df[f'{param} (REAL)'].values,
                df[f'{param} (IMAG)'].values,
                )

        ntwk_dict[param] = Network(f=f, s=s, name=param, comments=comments, f_unit='Hz')


    try:
        s=np.zeros((len(f),2,2), dtype=complex)
        s[:,0,0] = ntwk_dict['S11'].s.flatten()
        s[:,1,1] = ntwk_dict['S22'].s.flatten()
        s[:,1,0] = ntwk_dict['S21'].s.flatten()
        s[:,0,1] = ntwk_dict['S12'].s.flatten()
        name  =os.path.splitext(os.path.basename(filename))[0]
        ntwk = Network(f=f, s=s, name=name, comments=comments)

        return ntwk
    except  Exception:
        return ntwk_dict

def pna_csv_2_ntwks3(filename):
    """
    Read a CSV file exported from an Agilent PNA in dB/deg format.

    Parameters
    ----------
    filename : str
        full path or filename

    Returns
    -------
    out : n
        2-Port Network


    """
    header, comments, d = read_pna_csv(filename)
    col_headers = pna_csv_header_split(filename)

    # set impedance to 50 Ohm (doesn't matter for now)
    z0 = np.ones(np.shape(d)[0])*50
    # read f values
    f = d[:,0]

    name = os.path.splitext(os.path.basename(filename))[0]

    if 'db' in header.lower() and 'deg' in header.lower():
        # this is a cvs in DB/DEG format
        # -> convert db/deg values to real/imag values
        s = np.zeros((len(f),2,2), dtype=complex)

        for k, h in enumerate(col_headers[1:]):
            if 's11' in h.lower() and 'db' in h.lower():
                s[:,0,0] = mf.dbdeg_2_reim(d[:,k+1], d[:,k+2])
            elif 's21' in h.lower() and 'db' in h.lower():
                s[:,1,0] = mf.dbdeg_2_reim(d[:,k+1], d[:,k+2])
            elif 's12' in h.lower() and 'db' in h.lower():
                s[:,0,1] = mf.dbdeg_2_reim(d[:,k+1], d[:,k+2])
            elif 's22' in h.lower() and 'db' in h.lower():
                s[:,1,1] = mf.dbdeg_2_reim(d[:,k+1], d[:,k+2])

        n = Network(f=f,s=s,z0=z0, name = name, f_unit="Hz")
        return n

    else:
        warn("File does not seem to be formatted properly (only dB/deg supported for now)", stacklevel=2)

def read_all_csv(dir='.', contains = None):
    """
    Read all CSV files in a directory.

    Parameters
    ----------
    dir : str, optional
        the directory to load from, default  \'.\'
    contains : str, optional
        if not None, only files containing this substring will be loaded

    Returns
    -------
    out : dictionary
        dictionary containing all loaded CSV objects. keys are the
        filenames without extensions, and the values are the objects

    """

    out={}
    for filename in os.listdir(dir):
        if contains is not None and contains not in filename:
            continue
        fullname = os.path.join(dir,filename)
        keyname = os.path.splitext(filename)[0]
        try:
            out[keyname] = pna_csv_2_ntwks3(fullname)
            continue
        except Exception:
            pass

        try:
            out[keyname] = Network(fullname)
            continue
        except  Exception:
            pass

    return out


class AgilentCSV:
    """
    Agilent-style csv file representing either scalar traces vs frequency
    or complex data vs. frequency.


    """
    def __init__(self, filename, *args, **kwargs):
        r"""
        Init.

        Parameters
        ----------
        filename : str
            filename
        \*args ,\*\*kwargs :
            passed to Network.__init__ in :func:`networks` and :func:`scalar_networks`
        """
        self.filename = filename
        self.header, self.comments, self.data = self.read()
        self.args, self.kwargs = args, kwargs

    def read(self):
        """
        Reads data from  file.

        This function returns a triplet containing the header, comments,
        and data.

        Returns
        -------
        header : str
            The header string, which is the line following the 'BEGIN'
        comments : str
            All lines that begin with a '!'
        data : :class:`numpy.ndarray`
            An array containing the data. The meaning of which depends on
            the header.
        """
        with open(self.filename) as fid:
            begin_line = -2
            end_line = -1
            comments = ''
            for k,line in enumerate(fid.readlines()):
                if line.startswith('!'):
                    comments += line[1:]
                elif line.startswith('BEGIN'):
                    begin_line = k
                elif line.startswith('END'):
                    end_line = k

                if k == begin_line+1:
                    header = line

            footer = k - end_line

        try:
            data = np.genfromtxt(
                self.filename,
                delimiter = ',',
                skip_header = begin_line + 2,
                skip_footer = footer,
                )
        except(ValueError):
            # carriage returns require a doubling of skiplines
            data = np.genfromtxt(
                self.filename,
                delimiter = ',',
                skip_header = (begin_line + 2)*2,
                skip_footer = footer,
                )

        # pna uses unicode coding for degree symbol, but we dont need that
        header = header.replace('\xb0','deg').rstrip('\n').rstrip('\r')

        return header, comments, data

    @property
    def frequency(self):
        """
        Frequency object : :class:`~skrf.frequency.Frequency`.
        """
        d = self.data
        #try to pull out frequency unit
        cols = self.columns
        try:
            f_unit = cols[0].split('(')[1].split(')')[0]
        except  Exception:
            f_unit = 'hz'

        f = d[:,0]
        return Frequency.from_f(f, unit = f_unit)

    @property
    def n_traces(self):
        """
        number of data traces : int
        """
        return   self.data.shape[1] - 1

    @property
    def columns(self):
        """
        List of column names : list of str.

        This function is needed because Agilent allows the delimiter
        of a csv file (ie `'`) to be present in the header name. ridiculous.

        If splitting the header fails, then a suitable list is returned of
        the correct length, which looks like::

            ['Freq(?)','filename-0','filename-1',..]
        """
        header,  d = self.header, self.data

        n_traces =  d.shape[1] - 1 # because there's is one frequency column

        if header.count(',') == n_traces:
            cols = header.split(',') # column names
        else:
            # the header contains too many delimiters. what loosers. maybe
            # we can split it on  `)'` instead
            if header.count('),') == n_traces:
                cols = header.split('),')
                # we need to add back the parenthesis we split on to all but
                # last columns
                cols =  [col + ')'  for col in cols[:-1]] + [cols[-1]]
            else:
                # I dont know how to separate column names
                warn('Cant decipher header, so I\'m creating one. check output. ', stacklevel=2)
                cols = ['Freq(?),']+['%s-%i'%(util.basename_noext(self.filename),k) \
                    for k in range(n_traces)]
        return cols

    @property
    def scalar_networks(self):
        """
        Returns list of Networks for each column.


        .. note::
            The data is stored in the Network's `.s` property, so its up
            to you to interpret results. if 'db' is in the column name then
            it is converted to linear before being store into `s`.


        Returns
        --------
        out : list of :class:`~skrf.network.Network` objects
            list of Networks representing the data contained in each column

        """
        comments = self.comments
        d = self.data
        n_traces =  d.shape[1] - 1 # because there's is one frequency column
        cols = self.columns
        freq = self.frequency

        # loop through columns and create a single network for each column
        ntwk_list = []
        for k in range(1,n_traces+1):
            s = d[:,k]
            if 'db' in cols[k].lower():
                s = mf.db_2_mag(s)

            ntwk_list.append(
                Network(
                    frequency = freq, s = s,comments = comments,
                    name = cols[k], **self.kwargs)
                )

        return ntwk_list

    @property
    def networks(self):
        """
        Reads a PNAX csv file, and returns a list of one-port Networks.


        .. note::
            Note this only works if csv is save in Real/Imaginary format for now


        Parameters
        ----------
        filename : str
            filename

        Returns
        -------
        out : list of :class:`~skrf.network.Network` objects
            list of Networks representing the data contained in column pairs

        """
        names = self.columns
        comments = self.comments
        d = self.data

        ntwk_list = []
        if (self.n_traces)//2 == 0 : # / --> // for Python3 compatibility
            # this isn't complex data
            return self.scalar_networks
        else:
            for k in range((self.n_traces)//2):

                name = names[k*2+1]
                #print(names[k], names[k+1])
                if 'db' in names[k].lower() and 'deg' in names[k+1].lower():
                    s = mf.dbdeg_2_reim(d[:,k*2+1], d[:,k*2+2])
                elif 'real' in names[k].lower() and 'imag' in names[k+1].lower():
                    s = d[:,k*2+1]+1j*d[:,k*2+2]
                else:
                    warn(f'CSV format unrecognized in "{names[k]}" or "{names[k+1]}". '
                         'It\'s up to you to interpret the resulting network correctly.', stacklevel=2)
                    s = d[:,k*2+1]+1j*d[:,k*2+2]

                ntwk_list.append(
                    Network(frequency = self.frequency, s=s, name=name,
                        comments=comments, **self.kwargs)
                    )

        return ntwk_list

    @property
    def dict(self):
        """
        Dictionary representation of csv file.

        Returns
        -------
        dict : dict

        """
        return { self.columns[k]:self.data[:,k] \
            for k in range(self.n_traces+1)}

    @property
    def dataframe(self):
        """
        Pandas DataFrame representation of csv file.

        Returns
        -------
        df : `pandas.DataFrame`

        """
        from pandas import DataFrame, Index

        index = Index(
            self.frequency.f_scaled,
            name = f'Frequency({self.frequency.unit})')

        return DataFrame(
                { self.columns[k]:self.data[:,k] \
                    for k in range(1,self.n_traces+1)},
                index=index,
                )

def pna_csv_header_split(filename):
    """
    Split a Agilent csv file's header into a list

    This function is needed because Agilent allows the delimiter
    of a csv file (ie `'`) to be present in the header name. ridiculous.

    If splitting the header fails, then a suitable list is returned of
    the correct length, which looks like
     * ['Freq(?)','filename-0','filename-1',..]

    Parameters
    ------------
    filename : str
        csv filename

    Returns
    --------
    cols : list of str's
        list of column names
    """
    warn("deprecated", DeprecationWarning, stacklevel=2)
    header, comments, d = read_pna_csv(filename)

    n_traces =  d.shape[1] - 1 # because theres is one frequency column

    if header.count(',') == n_traces:
        cols = header.split(',') # column names
    else:
        # the header contains too many delimiters. what loosers. maybe
        # we can split it on  `)'` instead
        if header.count('),') == n_traces:
            cols = header.split('),')
            # we need to add back the parenthesis we split on to all but
            # last columns
            cols =  [col + ')'  for col in cols[:-1]] + [cols[-1]]
        else:
            # i dont know how to separate column names
            warn('Cant decipher header, so im creating one. check output. ', stacklevel=2)
            cols = ['Freq(?),']+['%s-%i'%(util.basename_noext(filename),k) \
                for k in range(n_traces)]
    return cols

def pna_csv_2_ntwks(filename):
    """
    Reads a PNAX csv file, and returns a list of one-port Networks.


    .. deprecated::
        Use :func:`pna_csv_2_ntwks3` instead.


    .. note::
        Note this only works if csv is save in Real/Imaginary format for now


    Parameters
    ----------
    filename : str
        filename

    Returns
    -------
    out : list of :class:`~skrf.network.Network` objects
        list of Networks representing the data contained in column pairs

    """
    warn("deprecated", DeprecationWarning, stacklevel=2)
    #TODO: check the data's format (Real-imag or db/angle , ..)
    header, comments, d = read_pna_csv(filename)
    #import pdb;pdb.set_trace()

    names = pna_csv_header_split(filename)

    ntwk_list = []


    if (d.shape[1]-1)/2 == 0 :
        # this isn't complex data
        f = d[:,0]
        if 'db' in header.lower():
            s = mf.db_2_mag(d[:,1])
        else:
            raise (NotImplementedError)
        name = os.path.splitext(os.path.basename(filename))[0]
        return Network(f=f, s=s, name=name, comments=comments, f_unit='Hz')
    else:
        for k in range(int((d.shape[1]-1)/2)):
            f = d[:,0]
            name = names[k]
            print((names[k], names[k+1]))
            if 'db' in names[k].lower() and 'deg' in names[k+1].lower():
                s = mf.dbdeg_2_reim(d[:,k*2+1], d[:,k*2+2])
            elif 'real' in names[k].lower() and 'imag' in names[k+1].lower():
                s = d[:,k*2+1]+1j*d[:,k*2+2]
            else:
                print('WARNING: csv format unrecognized. ts up to you to  interpret the resultant network correctly.')
                s = d[:,k*2+1]+1j*d[:,k*2+2]

            ntwk_list.append(
                Network(f=f, s=s, name=name, comments=comments, f_unit='Hz')
                )

    return ntwk_list

def pna_csv_2_freq(filename):
    warn("deprecated", DeprecationWarning, stacklevel=2)
    header, comments, d = read_pna_csv(filename)

    f = d[:,0]
    return Frequency.from_f(f, unit = "Hz")


def pna_csv_2_scalar_ntwks(filename, *args, **kwargs):
    """
    Reads a PNAX csv file containing scalar traces, returning Networks



    Parameters
    -----------
    filename : str
        filename

    Returns
    --------
    out : list of :class:`~skrf.network.Network` objects
        list of Networks representing the data contained in column pairs

    """
    warn("deprecated", DeprecationWarning, stacklevel=2)
    header, comments, d = read_pna_csv(filename)

    n_traces =  d.shape[1] - 1 # because theres is one frequency column

    cols = pna_csv_header_split(filename)

    f = d[:,0]
    freq = Frequency.from_f(f, unit = 'Hz')

    # loop through columns and create a single network for each column
    ntwk_list = []
    for k in range(1,n_traces+1):
        s = d[:,k]
        if 'db' in cols[k].lower():
            s = mf.db_2_mag(s)

        ntwk_list.append(
            Network(
                frequency = freq, s = s,comments = comments,
                name = cols[k], **kwargs)
            )



    return ntwk_list




def read_zva_dat(filename, *args, **kwargs):
    r"""
    Reads data from a dat file written by a R&S ZVA in dB/deg or re/im format.

    This function returns a triplet containing header, comments and data.


    Parameters
    ----------
    filename : str
        the file
    \*args, \*\*kwargs :

    Returns
    -------
    header : str
        The header string, which is the line following the 'BEGIN'
    data : :class:`numpy.ndarray`
        An array containing the data. The meaning of which depends on
        the header.

    """
    #warn("deprecated", DeprecationWarning)
    with open(filename) as fid:
        begin_line = -2
        comments = ''
        for k,line in enumerate(fid.readlines()):
            if line.startswith('%'):
                comments += line[1:]
                header = line
                begin_line = k+1

    data = np.genfromtxt(
        filename,
        delimiter = ',',
        skip_header = begin_line,
        **kwargs
        )

    return header, comments, data

def zva_dat_2_ntwks(filename):
    """
    Read a dat file exported from a R&S ZVA in dB/deg or re/im format.

    Parameters
    ----------
    filename : str
        full path or filename

    Returns
    -------
    out : n
        2-Port Network


    """
    header, comments, d = read_zva_dat(filename)
    col_headers = header.split(',')

    # set impedance to 50 Ohm (doesn't matter for now)
    z0 = np.ones(np.shape(d)[0])*50
    # read f values, convert to GHz
    f = d[:,0]/1e9

    name = os.path.splitext(os.path.basename(filename))[0]

    if 're' in header.lower() and 'im' in header.lower():
        # this is a cvs in re/im format
        # -> no conversion required
        s = np.zeros((len(f),2,2), dtype=complex)

        for k, h in enumerate(col_headers):
            if 's11' in h.lower() and 're' in h.lower():
                s[:,0,0] = d[:,k] + 1j*d[:,k+1]
            elif 's21' in h.lower() and 're' in h.lower():
                s[:,1,0] = d[:,k] + 1j*d[:,k+1]
            elif 's12' in h.lower() and 're' in h.lower():
                s[:,0,1] = d[:,k+1] #+ 1j*d[:,k+2]
            elif 's22' in h.lower() and 're' in h.lower():
                s[:,1,1] = d[:,k+1] #+ 1j*d[:,k+2]

    elif 'db' in header.lower() and "deg" not in header.lower():
        # this is a cvs in db format (no deg values)
        # -> conversion required
        s = np.zeros((len(f),2,2), dtype=complex)

        for k, h in enumerate(col_headers):
            # this doesn't always work! (depends on no. of channels, sequence of adding traces etc.
            # -> Needs changing!
            if 's11' in h.lower() and 'db' in h.lower():
                s[:,0,0] = mf.dbdeg_2_reim(d[:,k], d[:,k+2])
            elif 's21' in h.lower() and 'db' in h.lower():
                s[:,1,0] = mf.dbdeg_2_reim(d[:,k], d[:,k+2])

        n = Network(f=f,s=s,z0=z0, name = name)
        return n

    else:
        warn("File does not seem to be formatted properly (dB/deg or re/im)", stacklevel=2)

def read_all_zva_dat(dir='.', contains = None):
    """
    Read all DAT files in a directory (from R&S ZVA).

    Parameters
    ----------
    dir : str, optional
        the directory to load from, default  \'.\'
    contains : str, optional
        if not None, only files containing this substring will be loaded

    Returns
    -------
    out : dictionary
        dictionary containing all loaded DAT objects. keys are the
        filenames without extensions, and the values are the objects


    """

    out={}
    for filename in os.listdir(dir):
        if contains is not None and contains not in filename:
            continue
        fullname = os.path.join(dir,filename)
        keyname = os.path.splitext(filename)[0]
        try:
            out[keyname] = zva_dat_2_ntwks(fullname)
            continue
        except  Exception:
            pass

        try:
            out[keyname] = Network(fullname)
            continue
        except  Exception:
            pass

    return out



def read_vectorstar_csv(filename, *args, **kwargs):
    r"""
    Reads data from a csv file written by an Anritsu VectorStar.

    Parameters
    ----------
    filename : str
        the file
    \*args, \*\*kwargs :

    Returns
    -------
    header : str
        The header string, which is the line just before the data
    comments : str
        All lines that begin with a '!'
    data : :class:`numpy.ndarray`
        An array containing the data. The meaning of which depends on
        the header.


    """
    with open(filename) as fid:
        comments = ''.join([line for line in fid if line.startswith('!')])
        fid.seek(0)
        header = [line for line in fid if line.startswith('PNT')]
        fid.close()
        data = np.genfromtxt(
            filename,
            comments='!',
            delimiter =',',
            skip_header = 1)[1:]
        comments = comments.replace('\r','')
        comments = comments.replace('!','')

    return header, comments, data

def vectorstar_csv_2_ntwks(filename):
    """
    Reads a vectorstar csv file, and returns a list of one-port Networks.


    .. note::
        Note this only works if csv is save in Real/Imaginary format for now


    Parameters
    ----------
    filename : str
        filename

    Returns
    -------
    out : list of :class:`~skrf.network.Network` objects
        list of Networks representing the data contained in column pairs

    """
    #TODO: check the data's format (Real-imag or db/angle , ..)
    header, comments, d = read_vectorstar_csv(filename)
    names = [line for line in comments.split('\n') \
        if line.startswith('PARAMETER')][0].split(',')[1:]


    return [Network(
        f = d[:,k*3+1],
        s = d[:,k*3+2] + 1j*d[:,k*3+3],
        z0 = 50,
        name = names[k].rstrip(),
        comments = comments,
        ) for k in range(d.shape[1]/3)]