File: mathFunctions.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (1417 lines) | stat: -rw-r--r-- 32,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
"""
mathFunctions (:mod:`skrf.mathFunctions`)
=============================================


Provides commonly used mathematical functions.

Mathematical Constants
----------------------
Some convenient constants are defined in the :mod:`skrf.constants` module.

Complex Component Conversion
----------------------------

.. autosummary::
        :toctree: generated/

        complex_2_reim
        complex_2_magnitude
        complex_2_db
        complex_2_db10
        complex_2_radian
        complex_2_degree
        complex_2_magnitude
        complex_2_quadrature
        complex_components

Magnitude and decibel
---------------------

.. autosummary::
        :toctree: generated/

        magnitude_2_db
        mag_2_db
        mag_2_db10
        db_2_magnitude
        db_2_mag
        db10_2_mag

Phase Unwrapping
----------------

.. autosummary::
        :toctree: generated/

        unwrap_rad
        sqrt_phase_unwrap

Unit Conversion
---------------

.. autosummary::
        :toctree: generated/

        radian_2_degree
        degree_2_radian
        np_2_db
        db_2_np
        feet_2_meter
        meter_2_feet
        db_per_100feet_2_db_per_100meter

Scalar-Complex Conversion
-------------------------

These conversions are useful for wrapping other functions that don't
support complex numbers.

.. autosummary::
        :toctree: generated/

        complex2Scalar
        scalar2Complex

Special Functions
-----------------

.. autosummary::
        :toctree: generated/

        dirac_delta
        neuman
        null
        cross_ratio

Random Number Generation
------------------------

.. autosummary::
        :toctree: generated/

        set_rand_rng
        rand_rng
        rand_c

Various Utility Functions
--------------------------
.. autosummary::
        :toctree: generated/

        psd2TimeDomain
        rational_interp
        ifft
        irfft
        is_square
        is_symmetric
        is_Hermitian
        is_positive_definite
        is_positive_semidefinite
        get_Hermitian_transpose
        sqrt_known_sign
        find_correct_sign
        find_closest
        inf_to_num
        rsolve
        nudge_eig


"""
from __future__ import annotations

from collections.abc import Callable

import numpy as np
from numpy import imag, pi, real, unwrap
from scipy import signal

from .constants import ALMOST_ZERO, EIG_COND, EIG_MIN, INF, LOG_OF_NEG, NumberLike


# simple conversions
def complex_2_magnitude(z: NumberLike):
    """
    Return the magnitude of the complex argument.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    mag : ndarray or scalar

    """
    return np.abs(z)


def complex_2_db(z: NumberLike):
    r"""
    Return the magnitude in dB of a complex number (as :math:`20\log_{10}(|z|)`)..

    The magnitude in dB is defined as :math:`20\log_{10}(|z|)`
    where :math:`z` is a complex number.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    mag20dB : ndarray or scalar
    """
    return magnitude_2_db(np.abs(z))


def complex_2_db10(z: NumberLike):
    r"""
    Return the magnitude in dB of a complex number (as :math:`10\log_{10}(|z|)`).

    The magnitude in dB is defined as :math:`10\log_{10}(|z|)`
    where :math:`z` is a complex number.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    mag10dB : ndarray or scalar
    """
    return mag_2_db10(np.abs(z))


def complex_2_radian(z: NumberLike):
    """
    Return the angle complex argument in radian.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    ang_rad : ndarray or scalar
        The counterclockwise angle from the positive real axis on the complex
        plane in the range ``(-pi, pi]``, with dtype as numpy.float64.
    """
    return np.angle(z)


def complex_2_degree(z: NumberLike):
    """
    Returns the angle complex argument in degree.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    ang_deg : ndarray or scalar
    """
    return np.angle(z, deg=True)


def complex_2_quadrature(z: NumberLike):
    r"""
    Take a complex number and returns quadrature, which is (length, arc-length from real axis)

    Arc-length is calculated as :math:`|z| \arg(z)`.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    mag : array like or scalar
        magnitude (length)
    arc_length : array like or scalar
        arc-length from real axis: angle*magnitude
    """
    return (np.abs(z), np.angle(z)*np.abs(z))


def complex_2_reim(z: NumberLike):
    """
    Return real and imaginary parts of a complex number.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    real : array like or scalar
        real part of input
    imag : array like or scalar
        imaginary part of input
    """
    return (np.real(z), np.imag(z))


def complex_components(z: NumberLike):
    """
    Break up a complex array into all possible scalar components.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    c_real : array like or scalar
        real part
    c_imag : array like or scalar
        imaginary part
    c_angle : array like or scalar
        angle in degrees
    c_mag : array like or scalar
        magnitude
    c_arc : array like or scalar
        arclength from real axis, angle*magnitude
    """
    return (*complex_2_reim(z), np.angle(z,deg=True), *complex_2_quadrature(z))


def magnitude_2_db(z: NumberLike, zero_nan: bool = True):
    """
    Convert linear magnitude to dB.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers
    zero_nan : bool, optional
        Replace NaN with zero. The default is True.

    Returns
    -------
    z : number or array_like
       Magnitude in dB given by 20*log10(|z|)
    """
    out = 20 * np.log10(z)
    if zero_nan:
        return np.nan_to_num(out, nan=LOG_OF_NEG, neginf=-np.inf)
    return out

mag_2_db = magnitude_2_db


def mag_2_db10(z: NumberLike, zero_nan:bool = True):
    """
    Convert linear magnitude to dB.

    Parameters
    ----------
    z : array_like
        A complex number or sequence of complex numbers
    zero_nan : bool, optional
        Replace NaN with zero. The default is True.

    Returns
    -------
    z : array_like
       Magnitude in dB given by 10*log10(|z|)
    """
    out = 10 * np.log10(z)
    if zero_nan:
        return np.nan_to_num(out, nan=LOG_OF_NEG, neginf=-np.inf)
    return out


def db_2_magnitude(z: NumberLike):
    """
    Convert dB to linear magnitude.

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    z : number or array_like
        10**((z)/20) where z is a complex number
    """
    return 10**((z)/20.)

db_2_mag = db_2_magnitude


def db10_2_mag(z: NumberLike):
    """
    Convert dB to linear magnitude.

    Parameters
    ----------
    z : array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    z : array_like
        10**((z)/10) where z is a complex number
    """
    return 10**((z)/10.)


def magdeg_2_reim(mag: NumberLike, deg: NumberLike):
    """
    Convert linear magnitude and phase (in deg) arrays into a complex array.

    Parameters
    ----------
    mag : number or array_like
        A complex number or sequence of real numbers
    deg : number or array_like
        A complex number or sequence of real numbers

    Returns
    -------
    z : array_like
        A complex number or sequence of complex numbers

    """
    return mag*np.exp(1j*deg*pi/180.)

def dbdeg_2_reim(db: NumberLike, deg: NumberLike):
    """
    Converts dB magnitude and phase (in deg) arrays into a complex array.

    Parameters
    ----------
    db : number or array_like
        A realnumber or sequence of real numbers
    deg : number or array_like
        A real number or sequence of real numbers

    Returns
    -------
    z : array_like
        A complex number or sequence of complex numbers
    """
    return magdeg_2_reim(db_2_magnitude(db), deg)


def db_2_np(db: NumberLike):
    """
    Converts a value in decibel (dB) to neper (Np).

    Parameters
    ----------
    db : number or array_like
        A real number or sequence of real numbers

    Returns
    -------
    np : number or array_like
        A real number of sequence of real numbers
    """
    return (np.log(10)/20) * db


def np_2_db(x: NumberLike):
    """
    Converts a value in Nepers (Np) to decibel (dB).

    Parameters
    ----------
    np : number or array_like
        A real number or sequence of real numbers

    Returns
    -------
    db : number or array_like
        A real number of sequence of real numbers
    """
    return 20/np.log(10) * x


def radian_2_degree(rad: NumberLike):
    """
    Convert angles from radians to degrees.

    Parameters
    ----------
    rad : number or array_like
        Angle in radian

    Returns
    -------
    deg : number or array_like
        Angle in degree
    """
    return (rad)*180/pi


def degree_2_radian(deg: NumberLike):
    """
    Convert angles from degrees to radians.

    Parameters
    ----------
    deg : number or array_like
        Angle in radian

    Returns
    -------
    rad : number or array_like
        Angle in degree
    """
    return (deg)*pi/180.


def feet_2_meter(feet: NumberLike = 1):
    """
    Convert length in feet to meter.

    1 foot is equal to 0.3048 meters.

    Parameters
    ----------
    feet : number or array-like, optional
        length in feet. Default is 1.

    Returns
    -------
    meter: number or array-like
        length in meter

    See Also
    --------
    meter_2_feet
    """
    return 0.3048*feet

def meter_2_feet(meter: NumberLike = 1):
    """
    Convert length in meter to feet.

    1 meter is equal to 0.3.28084 feet.

    Parameters
    ----------
    meter : number or array-like, optional
        length in meter. Default is 1.

    Returns
    -------
    feet : number or array-like
        length in feet

    See Also
    --------
    feet_2_meter
    """
    return 3.28084*meter


def db_per_100feet_2_db_per_100meter(db_per_100feet: NumberLike = 1):
    """
    Convert attenuation values given in dB/100ft to dB/100m.

    db_per_100meter = db_per_100feet * rf.meter_2_feet()

    Parameters
    ----------
    db_per_100feet : number or array-like, optional
        Attenuation in dB/ 100 ft. Default is 1.

    Returns
    -------
    db_per_100meter : number or array-like
        Attenuation in dB/ 100 m

    See Also
    --------
    meter_2_feet
    feet_2_meter
    np_2_db
    db_2_np
    """
    return db_per_100feet * 100 / feet_2_meter(100)


def unwrap_rad(phi: NumberLike):
    """
    Unwraps a phase given in radians.

    Parameters
    ----------
    phi : number or array_like
        phase in radians

    Returns
    -------
    phi : number of array_like
        unwrapped phase in radians
    """
    return unwrap(phi, axis=0)


def sqrt_known_sign(z_squared: NumberLike, z_approx: NumberLike):
    """
    Return the square root of a complex number, with sign chosen to match `z_approx`.

    Parameters
    ----------
    z_squared : number or array-like
        the complex to be square-rooted
    z_approx : number or array-like
        the approximate value of z. sign of z is chosen to match that of
        z_approx

    Returns
    -------
    z : number, array-like (same type as z_squared)
        square root of z_squared.
    """
    z = np.sqrt(z_squared)
    return np.where(
        np.sign(np.angle(z)) == np.sign(np.angle(z_approx)),
        z, z.conj())


def find_correct_sign(z1: NumberLike, z2: NumberLike, z_approx: NumberLike):
    r"""
    Create new vector from z1, z2 choosing elements with sign matching z_approx.

    This is used when you have to make a root choice on a complex number.
    and you know the approximate value of the root.

    .. math::

        z1,z2 = \pm \sqrt(z^2)


    Parameters
    ----------
    z1 : array-like
        root 1
    z2 : array-like
        root 2
    z_approx : array-like
        approximate answer of z

    Returns
    -------
    z3 : np.array
        array built from z1 and z2 by
        z1 where sign(z1) == sign(z_approx), z2 else

    """
    return np.where(
    np.sign(np.angle(z1)) == np.sign(np.angle(z_approx)),z1, z2)


def find_closest(z1: NumberLike, z2: NumberLike, z_approx: NumberLike):
    """
    Return z1 or z2  depending on which is  closer to z_approx.

    Parameters
    ----------
    z1 : array-like
        root 1
    z2 : array-like
        root 2
    z_approx : array-like
        approximate answer of z

    Returns
    -------
    z3 : np.array
        array built from z1 and z2

    """
    z1_dist = abs(z1-z_approx)
    z2_dist = abs(z2-z_approx)

    return np.where(z1_dist<z2_dist,z1, z2)

def sqrt_phase_unwrap(z: NumberLike):
    r"""
    Take the square root of a complex number with unwrapped phase.

    This idea came from Lihan Chen.

    .. math::

        \sqrt{|z|} \exp( \arg_{unwrap}(z) / 2 )


    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    z : number of array_like
        A complex number or sequence of complex numbers
    """
    return np.sqrt(abs(z))*\
            np.exp(0.5*1j*unwrap_rad(complex_2_radian(z)))


# mathematical functions
def dirac_delta(x: NumberLike):
    r"""
    Calculate Dirac function.

    Dirac function :math:`\delta(x)` defined as :math:`\delta(x)=1` if x=0,
    0 otherwise.

    Parameters
    ----------
    x : number of array_like
        A real number or sequence of real numbers

    Returns
    -------
    delta : number of array_like
        1 or 0

    References
    ----------
    https://en.wikipedia.org/wiki/Dirac_delta_function

    """
    return (x==0)*1. + (x!=0)*0.


def neuman(x: NumberLike):
    r"""
    Calculate Neumans number.

    It is defined as:

    .. math::

        2 - \delta(x)

    where :math:`\delta` is the Dirac function.

    Parameters
    ----------
    x : number or array_like
        A real number or sequence of real numbers

    Returns
    -------
    y : number or array_like
        A real number or sequence of real numbers

    See Also
    --------
    dirac_delta
    """
    return 2. - dirac_delta(x)


def null(A: np.ndarray, eps: float = 1e-15):
    """
    Calculate the null space of matrix A.

    Parameters
    ----------
    A : array_like
    eps : float

    Returns
    -------
    null_space : array_like

    References
    ----------
    https://scipy-cookbook.readthedocs.io/items/RankNullspace.html
    https://stackoverflow.com/questions/5889142/python-numpy-scipy-finding-the-null-space-of-a-matrix
    """
    u, s, vh = np.linalg.svd(A)
    null_space = np.compress(s <= eps, vh, axis=0)
    return null_space.T


def inf_to_num(x: NumberLike):
    """
    Convert inf and -inf's to large numbers.

    Parameters
    ------------
    x : array-like or number
        the input array or number

    Returns
    -------
    x : Number of array_like
        Input without with +/- inf replaced by large numbers
    """
    x = np.nan_to_num(x, nan=np.nan, posinf=INF, neginf=-1*INF)
    return x


def cross_ratio(a: NumberLike, b: NumberLike, c: NumberLike, d:NumberLike):
    r"""
    Calculate the cross ratio of a quadruple of distinct points on the real line.


    The cross ratio is defined as:


    .. math::

        r = \frac{ (a-b)(c-d) }{ (a-d)(c-b) }



    Parameters
    ----------
    a,b,c,d :  array-like or number

    Returns
    -------
    r : array-like or number

    References
    ----------
    https://en.wikipedia.org/wiki/Cross-ratio

    """
    return ((a-b)*(c-d))/((a-d)*(c-b))


def complexify(f: Callable, name: str = None):
    """
    Make a function f(scalar) into f(complex).

    If `f(x)` then it returns `f_c(z) = f(real(z)) + 1j*f(imag(z))`

    If the real/imag arguments are not first, then you may specify the
    name given to them as kwargs.

    Parameters
    ----------
    f : Callable
        function of real variable
    name : string, optional
        name of the real/imag argument names if they are not first

    Returns
    -------
    f_c : Callable
        function of a complex variable

    Examples
    --------
    >>> def f(x): return x
    >>> f_c = rf.complexify(f)
    >>> z = 0.2 -1j*0.3
    >>> f_c(z)

    """
    def f_c(z, *args, **kw):
        if name is not None:
            kw_re = {name: real(z)}
            kw_im = {name: imag(z)}
            kw_re.update(kw)
            kw_im.update(kw)
            return f(*args, **kw_re) + 1j*f(*args, **kw_im)
        else:
            return f(real(z), *args,**kw) + 1j*f(imag(z), *args, **kw)
    return f_c



# old functions just for reference
def complex2Scalar(z: NumberLike):
    """
    Serialize a list/array of complex numbers

    Parameters
    ----------
    z : number or array_like
        A complex number or sequence of complex numbers

    Returns
    -------
    re_im : array_like
        produce the following array for an input z:
        z[0].real, z[0].imag, z[1].real, z[1].imag, etc.

    See Also
    --------
    scalar2Complex
    """
    z = np.array(z)
    re_im = []
    for k in z:
        re_im.append(np.real(k))
        re_im.append(np.imag(k))
    return np.array(re_im).flatten()

def scalar2Complex(s: NumberLike):
    """
    Unserialize a list/array of real and imag numbers into a complex array.

    Inverse of :func:`complex2Scalar`.

    Parameters
    ----------
    s : array_like
        an array with real and imaginary parts ordered as:
        z[0].real, z[0].imag, z[1].real, z[1].imag, etc.

    Returns
    -------
    z : Number or array_like
        A complex number or sequence of complex number

    See Also
    --------
    complex2Scalar
    """
    s = np.array(s)
    z = []

    for k in range(0,len(s),2):
        z.append(s[k] + 1j*s[k+1])
    return np.array(z).flatten()


def flatten_c_mat(s: NumberLike, order: str = 'F'):
    """
    Take a 2D (mxn) complex matrix and serialize and flatten it.

    by default (using order='F') this generates the following
    from a  2x2

    [s11,s12;s21,s22]->[s11re,s11im,s21re,s12im, ...]

    Parameters
    ------------
    s : ndarray
        input 2D array
    order : string, optional
        either 'F' or 'C', for the order of flattening
    """
    return complex2Scalar(s.flatten(order='F'))


_global_rng = np.random.default_rng()


def set_rand_rng(rng: np.random.Generator) -> None:
    """
    Set the global :mod:`numpy` random number generator instance
    for generating random numbers in scikit-rf. This is useful for
    fixing a random seed for reproducible Monte Carlo analysis.

    This function is expected to be called before using any scikit-rf
    features, since it's a global variable and thread-unsafe. To temporarily
    change the random number generator of a particular method (e.g.
    :meth:`skrf.media.Media.random`), use the ``rng`` argument instead.

    Parameters
    -----------
    rng : :class:`numpy.random.Generator`
        Any random number generator accepted by :mod:`numpy`.

    Examples
    ---------
    >>> set_rand_rng(np.random.default_rng(seed=42))
    """
    global _global_rng
    _global_rng = rng


def rand_rng() -> np.random.Generator:
    """
    Obtain the global :mod:`numpy` random number generator instance.
    By default, it is :func:`numpy.random.default_rng`.
    """
    return _global_rng


def rand_c(*size, rng=None) -> np.ndarray:
    """
    Creates a complex random array of shape s.

    The bounds on real and imaginary values are (-1,1)

    Parameters
    -----------
    s : list-like
        shape of array

    rng : :class:`numpy.random.Generator` or None
        Any random number generator accepted by :mod:`numpy`.

    Examples
    ---------
    >>> x1 = rf.rand_c(2, 2)
    >>> x2 = rf.rand_c(2, 2, np.random.default_rng(seed=42))
    """
    if rng is None:
        rng = _global_rng
    return 1-2*rng.random(size) + \
        1j-2j*rng.random(size)


def psd2TimeDomain(f: np.ndarray, y: np.ndarray, windowType: str = 'hamming'):
    """
    Convert a one sided complex spectrum into a real time-signal.

    Parameters
    ----------
    f : list or np.ndarray
        frequency array
    y : list of np.ndarray
        complex PSD array
    windowType: string
        windowing function, defaults to 'hamming''

    Returns
    -------
    timeVector : array_like
        inverse units of the input variable f,
    signalVector : array_like

    Note
    ----
    If spectrum is not baseband then, `timeSignal` is modulated by `exp(t*2*pi*f[0])`.
    So keep in mind units. Also, due to this, `f` must be increasing left to right.
    """


    # apply window function
    # make sure windowType exists in scipy.signal
    if callable(getattr(signal, windowType)) and (windowType != 'rect' ):
        window = getattr(signal, windowType)(len(f))
        y = y * window

    #create other half of spectrum
    spectrum = (np.hstack([np.real(y[:0:-1]),np.real(y)])) + \
            1j*(np.hstack([-np.imag(y[:0:-1]),np.imag(y)]))

    # do the transform
    df = abs(f[1]-f[0])
    T = 1./df
    timeVector = np.linspace(-T/2.,T/2,2*len(f)-1)
    signalVector = np.fft.ifftshift(np.fft.ifft(np.fft.ifftshift(spectrum)))

    #the imaginary part of this signal should be from fft errors only,
    signalVector= np.real(signalVector)
    # the response of frequency shifting is
    # exp(1j*2*pi*timeVector*f[0])
    # but I would have to manually undo this for the inverse, which is just
    # another variable to require. The reason you need this is because
    # you can't transform to a bandpass signal, only a lowpass.
    #
    return timeVector, signalVector


def rational_interp(
        x: np.ndarray,
        y: np.ndarray,
        d: int = 4,
        epsilon: float = 1e-9,
        axis: int = 0,
        assume_sorted: bool = False) -> Callable:
    """
    Interpolates function using rational polynomials of degree `d`.

    Interpolating function is singular when xi is exactly one of the
    original x points. If xi is closer than epsilon to one of the original points,
    then the value at that points is returned instead.

    Implementation is based on [#]_.

    Parameters
    ----------
    x : np.ndarray
    y : np.ndarray
    d : int, optional
        order of the polynomial, by default 4
    epsilon : float, optional
        numerical tolerance, by default 1e-9
    axis : int, optional
        axis to operate on, by default 0
    assume_sorted : bool, optional
        If False, values of x can be in any order and they are sorted first.
        If True, x has to be an array of monotonically increasing values.

    Returns
    -------
    fx : Callable
        Interpolate function

    Raises
    ------
    NotImplementedError
        if axis != 0.

    References
    ------------
    .. [#] M. S. Floater and K. Hormann, "Barycentric rational interpolation with no poles and high rates of
    approximation," Numer. Math., vol. 107, no. 2, pp. 315-331, Aug. 2007
    """
    if axis != 0:
        raise NotImplementedError("Axis other than 0 is not implemented")

    if not assume_sorted:
        sort_indices = np.argsort(x, axis=axis)
        x = x[sort_indices]
        y = y[sort_indices]

    n = len(x)
    if n <= d:
        raise ValueError('Not enough x-axis points')

    w = np.zeros(n)
    # Scaling to give close to 1 weights
    hd = (x[n//2] - x[n//2-1])**d
    for k in range(n):
        for i in range(max(0,k-d), min(k+1, n-d)):
            p, xk = hd, x[k]
            for j in range(i,min(n,i+d+1)):
                if j == k:
                    continue
                p /= (xk - x[j])
            if i % 2 == 1:
                w[k] -= p
            else:
                w[k] += p

    # Add dimensions to match y shape
    w_shape = [1]*len(y.shape)
    w_shape[0] = -1
    w = w.reshape(w_shape)

    def fx(xi):
        # The method will divide by zero if new x value is exactly existing x value.
        # To avoid this we need to check for too close values and replace them with
        # y value at that position.
        idx = np.searchsorted(x, xi)
        idx[idx == len(x)] = len(x) - 1
        nearest_idx = np.where(np.abs(x[idx] - xi) < epsilon)[0]
        nearest_value = y[idx[nearest_idx]]

        xi = xi.reshape(*w_shape)
        with np.errstate(divide='ignore', invalid='ignore'):
            assert axis == 0
            tmp = [w[i] / (xi - x[i]) for i in range(n)]
            v = sum(y[i] * tmp[i] for i in range(n)) / sum(tmp)

        # Fix divide by zero errors
        for e, i in enumerate(nearest_idx):
            v[i] = nearest_value[e]

        return v

    return fx

def ifft(x: np.ndarray) -> np.ndarray:
    """
    Transforms S-parameters to time-domain bandpass.

    Parameters
    ----------
    x : array_like
        S-parameters vs frequency array.

    Returns
    -------
    X : array_like
        Fourier transformed array

    See Also
    --------
    irfft
    """
    return np.fft.fftshift(np.fft.ifft(np.fft.ifftshift(x, axes=0), axis=0), axes=0)


def irfft(x: np.ndarray, n:int = None) -> np.ndarray:
    """
    Transforms S-parameters to time-domain, assuming complex conjugates for
    values corresponding to negative frequencies.

    Parameters
    ----------
    x : array_like
        S-parameters vs frequency array.
    n : int, optional
        n parameter passed to :func:`numpy.fft.irfft`. Defaults to None.

    Returns
    -------
    X : array_like
        Fourier transformed array

    See Also
    --------
    ifft
    """
    return np.fft.fftshift(np.fft.irfft(x, axis=0, n=n), axes=0)


def is_square(mat: np.ndarray) -> bool:
    """
    Tests whether mat is a square matrix.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for being square

    Returns
    -------
    res : boolean

    See Also
    --------
    is_unitary
    is_symmetric
    """
    return mat.shape[0] == mat.shape[1]


def is_unitary(mat: np.ndarray, tol: float = ALMOST_ZERO) -> bool:
    """
    Tests mat for unitariness.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for unitariness
    tol : float
        Absolute tolerance. Defaults to :data:`ALMOST_ZERO`

    Returns
    -------
    res : boolean or array of boolean

    See Also
    --------
    is_square
    is_symmetric

    """
    if not is_square(mat):
        return False
    return np.allclose(get_Hermitian_transpose(mat) @ mat,
                        np.identity(mat.shape[0]), atol=tol)


def is_symmetric(mat: np.ndarray, tol: int = ALMOST_ZERO) -> bool:
    """
    Tests mat for symmetry.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for symmetry
    tol : float, optional
        Absolute tolerance. Defaults to :data:`ALMOST_ZERO`

    Returns
    -------
    res : boolean or array of boolean

    See Also
    --------
    is_square
    is_unitary
    """
    if not is_square(mat):
        return False
    return np.allclose(mat, mat.transpose(), atol=tol)


def get_Hermitian_transpose(mat: np.ndarray) -> np.ndarray:
    """
    Returns the conjugate transpose of mat.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to compute the conjugate transpose of

    Returns
    -------
    mat : np.ndarray

    """
    return mat.transpose().conjugate()


def is_Hermitian(mat: np.ndarray, tol: float = ALMOST_ZERO) -> bool:
    """
    Tests whether mat is Hermitian.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for being Hermitian
    tol : float
        Absolute tolerance

    Returns
    -------
    res : boolean

    See Also
    --------
    is_positive_definite
    is_positive_semidefinite
    """
    if not is_square(mat):
        return False
    return np.allclose(mat, get_Hermitian_transpose(mat), atol=tol)


def is_positive_definite(mat: np.ndarray, tol: float = ALMOST_ZERO) -> bool:
    """
    Tests mat for positive definiteness.

    Verifying that
    (1) mat is symmetric
    (2) it's possible to compute the Cholesky decomposition of mat.

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for positive definiteness
    tol : float, optional
        Absolute tolerance. Defaults to :data:`ALMOST_ZERO`

    Returns
    -------
    res : bool or array of bool

    See Also
    --------
    is_Hermitian
    is_positive_semidefinite
    """
    if not is_Hermitian(mat, tol=tol):
        return False
    try:
        np.linalg.cholesky(mat)
        return True
    except np.linalg.LinAlgError:
        return False


def is_positive_semidefinite(mat: np.ndarray, tol: float = ALMOST_ZERO) -> bool:
    """
    Tests mat for positive semidefiniteness.

    Checking whether all eigenvalues of mat are nonnegative within a certain tolerance

    Parameters
    ----------
    mat : np.ndarray
        Matrix to test for positive semidefiniteness
    tol : float, optional
        Absolute tolerance in determining nonnegativity due to loss of precision
        when computing the eigenvalues of mat. Defaults to :data:`ALMOST_ZERO`

    Returns
    -------
    res : bool or array of bool

    See Also
    --------
    is_Hermitian
    is_positive_definite
    """
    if not is_Hermitian(mat):
        return False
    try:
        v = np.linalg.eigvalsh(mat)
    except np.linalg.LinAlgError:
        return False
    return np.all(v > -tol)

def rsolve(A: np.ndarray, B: np.ndarray) -> np.ndarray:
    r"""Solves x @ A = B.

    Calls numpy.linalg.solve with transposed matrices.

    Same as B @ np.linalg.inv(A) but avoids calculating the inverse and
    should be numerically slightly more accurate.

    Input should have dimension of similar to (nfreqs, nports, nports).

    Parameters
    ----------
    A : np.ndarray
    B : np.ndarray

    Returns
    -------
    x : np.ndarray
    """
    return np.transpose(np.linalg.solve(np.transpose(A, (0, 2, 1)).conj(),
            np.transpose(B, (0, 2, 1)).conj()), (0, 2, 1)).conj()

def nudge_eig(mat: np.ndarray,
              cond: float | None = None,
              min_eig: float | None  = None) -> np.ndarray:
    r"""Nudge eigenvalues with absolute value smaller than
    max(cond * max(eigenvalue), min_eig) to that value.
    Can be used to avoid singularities in solving matrix equations.

    Input should have dimension of similar to (nfreqs, nports, nports).

    Parameters
    ----------
    mat : np.ndarray
        Matrices to nudge
    cond : float, optional
        Minimum eigenvalue ratio compared to the maximum eigenvalue.
        Default value is set by `skrf.constants.EIG_COND`.
    min_eig : float, optional
        Minimum eigenvalue.
        Default value is set by `skrf.constants.EIG_MIN`.
    Returns
    -------
    res : np.ndarray
        Nudged matrices
    """
    # use current constants
    if not cond:
        cond = EIG_COND
    if not min_eig:
        min_eig = EIG_MIN

    # Eigenvalues and vectors
    eigw, eigv = np.linalg.eig(mat)
    # Max eigenvalue for each frequency
    max_eig = np.amax(np.abs(eigw), axis=1)
    # Calculate mask for positions where problematic eigenvalues are
    mask = np.logical_or(np.abs(eigw) < cond * max_eig[:, None], np.abs(eigw) < min_eig)
    if not mask.any():
        # Nothing to do. Return the original array.
        return mat

    mask_cond = cond * np.repeat(max_eig[:, None], mat.shape[-1], axis=-1)[mask]
    mask_min = min_eig * np.ones(mask_cond.shape)
    # Correct the eigenvalues
    eigw[mask] = np.maximum(mask_cond, mask_min)

    # Now assemble the eigendecomposited matrices back
    e = np.zeros_like(mat)
    np.einsum('ijj->ij', e)[...] = eigw
    return rsolve(eigv, eigv @ e)