1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
|
"""
.. module:: skrf.network
========================================
network (:mod:`skrf.network`)
========================================
Provide an n-port network class and associated functions.
Much of the functionality in this module is provided as methods and
properties of the :class:`Network` Class.
Network Class
===============
.. autosummary::
:toctree: generated/
Network
Building Network
----------------
.. autosummary::
:toctree: generated/
Network.from_z
Network Representations
============================
.. autosummary::
:toctree: generated/
Network.s
Network.z
Network.y
Network.a
Network.t
Connecting Networks
===============================
.. autosummary::
:toctree: generated/
connect
innerconnect
cascade
cascade_list
de_embed
flip
inv
parallelconnect
Interpolation and Concatenation Along Frequency Axis
=====================================================
.. autosummary::
:toctree: generated/
stitch
overlap
overlap_multi
Network.resample
Network.interpolate
Network.interpolate_self
Combining and Splitting Networks
===================================
.. autosummary::
:toctree: generated/
subnetwork
one_port_2_two_port
twoport_to_nport
four_oneports_2_twoport
n_oneports_2_nport
n_twoports_2_nport
concat_ports
IO
====
.. autosummary::
skrf.io.general.read
skrf.io.general.write
skrf.io.general.network_2_spreadsheet
Network.write
Network.write_touchstone
Network.read
Network.write_spreadsheet
Noise
============
.. autosummary::
:toctree: generated/
Network.add_noise_polar
Network.add_noise_polar_flatband
Network.multiply_noise
Supporting Functions
======================
.. autosummary::
:toctree: generated/
inv
connect_s
innerconnect_s
innerconnect_s_lstsq
s2s
s2z
s2y
s2t
s2a
s2g
s2h
z2s
z2y
z2t
z2a
y2s
y2z
y2t
t2s
t2z
t2y
h2s
h2z
s2s_active
s2z_active
s2y_active
s2vswr_active
fix_z0_shape
renormalize_s
passivity
reciprocity
Misc Functions
=====================
.. autosummary::
:toctree: generated/
average
stdev
s_error
impedance_mismatch
two_port_reflect
chopinhalf
Network.nudge
Network.renormalize
Network.drop_non_monotonic_increasing
evenodd2delta
Network utilities
=====================
.. autosummary::
:toctree: generated/
fix_param_shape
fix_z0_shape
check_frequency_exist
check_nports_equal
check_frequency_equal
check_z0_equal
assert_frequency_equal
assert_nports_equal
assert_frequency_exist
assert_z0_equal
assert_z0_at_ports_equal
"""
from __future__ import annotations
import io
import os
import re
import warnings
import zipfile
from collections.abc import Callable, Sequence, Sized
from copy import deepcopy as copy
from functools import reduce
from itertools import product
from numbers import Number
from pathlib import Path
from pickle import UnpicklingError
from typing import Any, Literal, NoReturn, TextIO, get_args
import numpy as np
from numpy import gradient, ndarray, shape
from numpy.linalg import inv as npy_inv
from scipy import stats # for Network.add_noise_*, and Network.windowed
from scipy.integrate import cumulative_trapezoid
from scipy.interpolate import interp1d # for Network.interpolate()
from . import __version__
from . import mathFunctions as mf
from . import plotting as rfplt
from .constants import (
K_BOLTZMANN,
S_DEF_DEFAULT,
S_DEFINITIONS,
T0,
ZERO,
CircuitComponentT,
ComponentFuncT,
CoordT,
ErrorFunctionsT,
FrequencyUnitT,
InterpolKindT,
NumberLike,
PrimaryPropertiesT,
SdefT,
SparamFormatT,
)
from .frequency import Frequency
from .time import get_window, time_gate
from .util import Axes, axes_kwarg, copy_doc, find_nearest_index, get_extn, get_fid, partial_with_docs
class Network:
r"""
An n-port electrical network.
For instructions on how to create Network see :func:`__init__`.
An n-port network [#TwoPortWiki]_ may be defined by three quantities
* network parameter matrix (s, z, or y-matrix)
* port characteristic impedance matrix
* frequency information
The :class:`Network` class stores these data structures internally
in the form of complex :class:`numpy.ndarray`'s. These arrays are not
interfaced directly but instead through the use of the properties:
===================== =============================================
Property Meaning
===================== =============================================
:attr:`s` Scattering parameter matrix.
:attr:`z0` Characteristic impedance matrix.
:attr:`f` Frequency vector.
===================== =============================================
Although these docs focus on s-parameters, other equivalent network
representations such as :attr:`z` and :attr:`y` are
available. Scalar projections of the complex network parameters
are accessible through properties as well. These also return
:class:`numpy.ndarray`'s.
===================== =============================================
Property Meaning
===================== =============================================
:attr:`s_re` Real part of the s-matrix.
:attr:`s_im` Imaginary part of the s-matrix.
:attr:`s_mag` Magnitude of the s-matrix.
:attr:`s_db` Magnitude in log scale of the s-matrix.
:attr:`s_deg` Phase of the s-matrix in degrees.
===================== =============================================
The following operations act on the networks s-matrix.
===================== =============================================
Operator Function
===================== =============================================
\+ Element-wise addition of the s-matrix.
\- Element-wise difference of the s-matrix.
\* Element-wise multiplication of the s-matrix.
\/ Element-wise division of the s-matrix.
\*\* Cascading (only for 2-ports).
\// De-embedding (for 2-ports, see :attr:`inv`).
===================== =============================================
Different components of the :class:`Network` can be visualized
through various plotting methods. These methods can be used to plot
individual elements of the s-matrix or all at once. For more info
about plotting see the :doc:`../../tutorials/Plotting` tutorial.
========================= =============================================
Method Meaning
========================= =============================================
:func:`plot_s_smith` Plot complex s-parameters on smith chart.
:func:`plot_s_re` Plot real part of s-parameters vs frequency.
:func:`plot_s_im` Plot imaginary part of s-parameters vs frequency.
:func:`plot_s_mag` Plot magnitude of s-parameters vs frequency.
:func:`plot_s_db` Plot magnitude (in dB) of s-parameters vs frequency.
:func:`plot_s_deg` Plot phase of s-parameters (in degrees) vs frequency.
:func:`plot_s_deg_unwrap` Plot phase of s-parameters (in unwrapped degrees) vs frequency.
========================= =============================================
:class:`Network` objects can be created from a touchstone or pickle
file (see :func:`__init__`), by a
:class:`~skrf.media.media.Media` object, or manually by assigning the
network properties directly. :class:`Network` objects
can be saved to disk in the form of touchstone files with the
:func:`write_touchstone` method.
An exhaustive list of :class:`Network` Methods and Properties
(Attributes) are given below
References
----------
.. [#TwoPortWiki] http://en.wikipedia.org/wiki/Two-port_network
"""
PRIMARY_PROPERTIES: tuple[PrimaryPropertiesT, ...] = get_args(PrimaryPropertiesT)
"""
Primary Network Properties list like 's', 'z', 'y', etc.
"""
_func_lookup: dict[ComponentFuncT, tuple[str, Callable | None]] = {
're': ('Real Part', np.real),
'im': ('Imag Part', np.imag),
'mag': ('Magnitude', np.abs),
'db': ('Magnitude (dB)', mf.complex_2_db),
'db10': ('Magnitude (dB)', mf.complex_2_db10),
'rad': ('Phase (rad)', np.angle),
'deg': ('Phase (deg)', lambda x: np.angle(x, deg=True)),
'arcl': ('Arc Length',lambda x: np.angle(x) * np.abs(x)),
'rad_unwrap': ('Phase (rad)', lambda x: mf.unwrap_rad(np.angle(x))),
'deg_unwrap': ('Phase (deg)', lambda x: mf.radian_2_degree(mf.unwrap_rad(np.angle(x)))),
'arcl_unwrap': ('Arc Length', lambda x: mf.unwrap_rad(np.angle(x)) * np.abs(x)),
'vswr': ('VSWR', lambda x: (1 + abs(x)) / (1 - abs(x))),
'time': ('Time (real)', mf.ifft),
'time_db': ('Magnitude (dB)', lambda x: mf.complex_2_db(mf.ifft(x))),
'time_mag': ('Magnitude', lambda x: mf.complex_2_magnitude(mf.ifft(x))),
'time_impulse': ('Magnitude', None),
'time_step': ('Magnitude', None),
}
COMPONENT_FUNC_DICT: dict[ComponentFuncT, Callable | None] = {k: v[1] for k,v in _func_lookup.items()}
"""
Component functions like 're', 'im', 'mag', 'db', etc.
"""
@classmethod
def _generated_functions(cls) -> dict[str, tuple[Callable, str, str]]:
return {f"{p}_{func_name}": (func, p, func_name)
for p in cls.PRIMARY_PROPERTIES
for func_name, func in cls.COMPONENT_FUNC_DICT.items()}
# provides y-axis labels to the plotting functions
Y_LABEL_DICT: dict[ComponentFuncT, str] = {k: v[0] for k,v in _func_lookup.items()}
"""
Y-axis labels to the plotting functions.
"""
# CONSTRUCTOR
def __init__(self, file: str = None, name: str = None, params: dict = None,
comments: str = None, f_unit: FrequencyUnitT | None = None,
s_def: SdefT | None = None, **kwargs) -> None:
r"""
Network constructor.
Creates an n-port microwave network from a `file` or directly
from data. If no file or data is given, then an empty Network
is created.
Parameters
----------
file : str, Path, or file-object
file to load information from. supported formats are:
* touchstone file (.s?p) (or .ts)
* io.StringIO object (with `.name` property which contains the file extension, such as `myfile.s4p`)
* pickled Network (.ntwk, .p) see :func:`write`
name : str, optional
Name of this Network. if None will try to use file, if it is a str
params : dict, optional
Dictionary of parameters associated with the Network
comments : str, optional
Comments associated with the Network
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
NB: results are the same for real-valued characteristic impedances.
\*\*kwargs :
key word arguments can be used to assign properties of the
Network, such as `s`, `f` and `z0`.
keyword `encoding` can be used to define the Touchstone file encoding.
keyword `noise_interp_kind` used to change the default interpolation
method for noisy networks. Options are 'linear', 'nearest',
'nearest-up', 'zero', 'slinear', 'quadratic', 'cubic',
'previous', or 'next'. Review `scipy.interpolate.interp_1d`
for details on each interpolation style. Defaults to 'linear'.
keyword `noise_fill_value` used to change the default interpolation
fill value for noisy networks. Defaults to np.nan.
Examples
--------
From a touchstone
>>> n = rf.Network('ntwk1.s2p')
From a pickle file
>>> n = rf.Network('ntwk1.ntwk')
Create a blank network, then fill in values
>>> n = rf.Network()
>>> freq = rf.Frequency(1, 3, 3, 'GHz')
>>> n.frequency, n.s, n.z0 = freq, [1,2,3], [1,2,3]
Directly from values
>>> n = rf.Network(f=[1,2,3], s=[1,2,3], z0=[1,2,3])
Define some parameters associated with the Network
>>> n = rf.Network('ntwk1.s2p', params={'temperature': 25, 'voltage':5})
See Also
--------
from_z : init from impedance values
read : read a network from a file
write : write a network to a file, using pickle
write_touchstone : write a network to a touchstone file
"""
# allow for old kwarg for backward compatibility
if 'touchstone_filename' in kwargs:
file = kwargs['touchstone_filename']
# Default interpolation method.
self.noise_interp_kind = kwargs.get("noise_interp_kind", "linear")
# Default noise fill value when out of the s-parameter frequency bounds.
self.noise_fill_value = kwargs.get("noise_fill_value", np.nan)
self.name = name
self.params = params
self.comments = comments
self.port_names = None
self.encoding = kwargs.pop('encoding', None)
self.deembed = None
self.noise = None
self.noise_freq = None
self._z0 = np.array(50, dtype=complex)
self._port_modes = np.array([])
self._ext_attrs: dict[CircuitComponentT, bool] = {}
if s_def not in S_DEFINITIONS and s_def is not None:
raise ValueError('s_def parameter should be either:', S_DEFINITIONS)
else:
self.s_def = s_def
if file is not None:
# allows user to pass StringIO, filename or file obj
if isinstance(file, io.StringIO):
if not hasattr(file, "name") and name is not None:
file.name = name
self.read_touchstone(file, self.encoding)
else:
# open file in 'binary' mode because we are going to try and
# unpickle it first
fid = get_fid(file, 'rb')
try:
self.read(fid)
except UnicodeDecodeError: # Support for pickles created in Python2 and loaded in Python3
self.read(fid, encoding='latin1')
except (UnpicklingError, TypeError):
# if unpickling doesn't work then, close fid, reopen in
# non-binary mode and try to read it as touchstone
filename = fid.name
fid.close()
self.read_touchstone(filename, self.encoding)
if not fid.closed:
fid.close()
if name is None and isinstance(file, str):
name = os.path.splitext(os.path.basename(file))[0]
if self.frequency is not None and f_unit is not None:
self.frequency.unit = f_unit
# S-param definition. Done *after* reading data,
# where the S-param definition may have been guessed.
if self.s_def is None: # not guessed
self.s_def = S_DEF_DEFAULT
# Check for multiple attributes
params = [attr for attr in PRIMARY_PROPERTIES if attr in kwargs]
if len(params) > 1:
raise ValueError(f'Multiple input parameters provided: {params}')
# When initializing Network from different parameters than s
# we need to make sure that z0 has been set first because it will be
# needed in conversion to S-parameters. s is initialized with zeros here,
# to determine the correct z0 shape afterwards.
if params:
s_shape = np.array(kwargs[params[0]]).shape
self.s = np.zeros(s_shape, dtype=complex)
self.z0 = kwargs.get('z0', self._z0)
if not len(self.port_modes):
self.port_modes = np.array(["S"] * self.nports)
if "f" in kwargs.keys():
if f_unit is None:
f_unit = "hz"
kwargs["frequency"] = Frequency.from_f(kwargs.pop("f"), unit=f_unit)
for attr in list(PRIMARY_PROPERTIES) + ['frequency', 'noise', 'noise_freq']:
if attr in kwargs:
self.__setattr__(attr, kwargs[attr])
@classmethod
def from_z(cls, z: np.ndarray, *args, **kw) -> Network:
r"""
Create a Network from its Z-parameters.
Parameters
----------
z : Numpy array
Impedance matrix. Should be of shape fxnxn,
where f is frequency axis and n is number of ports
\*\*kwargs :
key word arguments can be used to assign properties of the
Network, `f` and `z0`.
Returns
-------
ntw : :class:`Network`
Created Network
Examples
--------
>>> f = rf.Frequency(start=1, stop=2, npoints=4, unit="GHz") # 4 frequency points
>>> z = np.random.rand(len(f),2,2) + np.random.rand(len(f),2,2)*1j # 2-port z-matrix: shape=(4,2,2)
>>> ntw = rf.Network.from_z(z, frequency=f)
"""
s = np.zeros(shape=z.shape)
me = cls(s=s, **kw)
me.z = z
return me
# OPERATORS
def __pow__(self, other: Network) -> Network:
"""
Cascade this network with another network.
Returns
-------
ntw : :class:`Network`
Cascaded Network
See Also
--------
cascade
"""
check_frequency_exist(self)
# if they pass a number then use power operator
if isinstance(other, Number):
out = self.copy()
out.s = out.s ** other
return out
else:
return cascade(self, other)
def __rshift__(self, other: Network) -> Network:
"""
Cascade two 4-port networks with "1=>2/3=>4" port numbering.
Note
----
connection diagram::
A B
+---------+ +---------+
-|0 1|---|0 1|-
-|2 3|---|1 3|-
... ... ... ...
-|2N-4 2N-3|---|2N-4 2N-3|-
-|2N-2 2N-1|---|2N-2 2N-1|-
+---------+ +---------+
Returns
-------
ntw : :class:`Network`
Cascaded Network
See Also
--------
cascade
"""
check_nports_equal(self, other)
check_frequency_exist(self)
(n,_) = shape(self.s[0])
if (n / 2) != (n // 2):
raise ValueError("Operator >> requires an even number of ports.")
ix_old = list(range(n))
n_2 = n//2
n_2_1 = list(range(n_2))
ix_new = list(sum(zip(n_2_1, list(map((lambda x: x + n_2), n_2_1))), ()))
_ntwk1 = self.copy()
_ntwk1.renumber(ix_old,ix_new)
_ntwk2 = other.copy()
_ntwk2.renumber(ix_old,ix_new)
_rslt = _ntwk1 ** _ntwk2
_rslt.renumber(ix_new,ix_old)
return _rslt
def __floordiv__(self, other: Network | tuple[Network, ...] ) -> Network:
"""
De-embedding 1 or 2 network[s], from this network.
:param other: skrf.Network, list, tuple: Network(s) to de-embed
:return: skrf.Network: De-embedded network
Returns
-------
ntw : :class:`Network`
See Also
--------
inv : inverse s-parameters
"""
if isinstance(other, list | tuple):
if len(other) >= 3:
raise ValueError('Incorrect number of networks.')
other_tpl = other[:2]
else:
other_tpl = (other, )
for o in other_tpl:
if o.number_of_ports != 2:
raise IndexError(f'Incorrect number of ports in network {o.name}.')
if len(other_tpl) == 1:
# if passed 1 network (A) and another network B
# e.g. A // B
# e.g. A // (B)
# then de-embed like B.inv * A
b = other_tpl[0]
result = self.copy()
result.s = (b.inv ** self).s
# de_embed(self.s, b.s)
return result
else:
# if passed 1 network (A) and a list/tuple of 2 networks (B, C),
# e.g. A // (B, C)
# e.g. A // [B, C]
# then de-embed like B.inv * A * C.inv
b = other_tpl[0]
c = other_tpl[1]
result = self.copy()
result.s = (b.inv ** self ** c.inv).s
# flip(de_embed(flip(de_embed(c.s, self.s)), b.s))
return result
def __mul__(self, other:Network) -> Network:
"""
Element-wise complex multiplication of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
check_frequency_exist(self)
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s * other.s
else:
# other may be an array or a number
result.s = self.s * np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __rmul__(self, other: Network) -> Network:
"""
Element-wise complex multiplication of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s * other.s
else:
# other may be an array or a number
result.s = self.s * np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __add__(self, other:Network) -> Network:
"""
Element-wise complex addition of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s + other.s
else:
# other may be an array or a number
result.s = self.s + np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __radd__(self, other:Network) -> Network:
"""
Element-wise complex addition of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s + other.s
else:
# other may be an array or a number
result.s = self.s + np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __sub__(self, other:Network) -> Network:
"""
Element-wise complex subtraction of s-matrix.
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s - other.s
else:
# other may be an array or a number
result.s = self.s - np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __rsub__(self, other:Network) -> Network:
"""
Element-wise complex subtraction of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = other.s - self.s
else:
# other may be an array or a number
result.s = np.asarray(other).reshape(-1, self.nports, self.nports) - self.s
return result
def __truediv__(self, other: Network) -> Network:
return self.__div__(other)
def __div__(self, other: Network) -> Network:
"""
Element-wise complex division of s-matrix.
Returns
-------
ntw : :class:`Network`
"""
result = self.copy()
if isinstance(other, Network):
self.__compatable_for_scalar_operation_test(other)
result.s = self.s / other.s
else:
# other may be an array or a number
result.s = self.s / np.asarray(other).reshape(-1, self.nports, self.nports)
return result
def __eq__(self, other: object) -> bool:
if not isinstance(other, self.__class__):
return False
if len(self.f) != len(other.f):
return False
for prop in ['f','s','z0']:
if not np.all(np.abs(getattr(self,prop)-getattr(other,prop))< ZERO):
return False
# if z0 is imaginary s_def is compared. If real of z0 is equal but s_def differs, networks are still equal
if ((np.imag(self.z0) != 0).all()) or ((np.imag(other.z0) != 0).all()):
if self.s_def == other.s_def:
return True
else:
return np.allclose(self.z0.real, other.z0.real, atol = ZERO)
else:
return True
def __ne__(self, other:object) -> bool:
return (not self.__eq__(other))
def __getitem__(self, key: str | int | slice | Sized) -> Network:
"""
Slice a Network object based on an index, or human readable string.
Parameters
----------
key : str, or slice
if slice; like [2-10] then it is interpreted as the index of
the frequency.
if str, then should be like '50.1-75.5ghz', or just '50'.
If the frequency unit is omitted then self.frequency.unit is
used. This will also accept a 2 or 3 dimensional index of the
forms:
port1, port2
key, port1, port2
where port1 and port2 are allowed to be string port names if
the network has them defined (Network.port_names)
If port1 and port2 are integers, will return the single-port
network based on matrix notation (indices starts at 1 not 0)
Returns
-------
ntwk : skrf.Network
interpolated in frequency if single dimension provided
OR
1-port network if multi-dimensional index provided
Examples
--------
>>> from skrf.data import ring_slot
>>> a = ring_slot['80-90ghz']
>>> a.plot_s_db()
Multidimensional indexing:
>>> import skrf as rf
>>> b = rf.Network("sometouchstonefile.s2p")
>>> c = b['80mhz', 'first_port_name', 'second_port_name']
>>> d = b['first_port_name', 'second_port_name']
Equivalently:
>>> d = b[1,2]
Equivalent to:
>>> d = b.s12
"""
# If user passes a multidimensional index, try to return that 1 port subnetwork
if isinstance(key, tuple):
if len(key) == 3:
slice_like, p1_name, p2_name = key
return self[slice_like][p1_name, p2_name]
elif len(key) == 2:
p1_name, p2_name = key
if isinstance(p1_name, int) and isinstance(p2_name, int): # allow integer indexing if desired
if p1_name <= 0 or p2_name <= 0 or p1_name > self.nports or p2_name > self.nports:
raise ValueError("Port index out of bounds")
p1_index = p1_name - 1
p2_index = p2_name - 1
else:
if self.port_names is None:
raise ValueError("Can't index without named ports")
try:
p1_index = self.port_names.index(p1_name)
except ValueError as err:
raise KeyError(f"Unknown port {p1_name}") from err
try:
p2_index = self.port_names.index(p2_name)
except ValueError as err:
raise KeyError(f"Unknown port {p2_name}") from err
ntwk = self.copy()
ntwk.s = self.s[:, p1_index, p2_index]
ntwk.z0 = self.z0[:, p1_index]
ntwk.name = f"{self.name}({p1_name}, {p2_name})"
ntwk.port_names = None
return ntwk
else:
raise ValueError(f"Don't understand index: {key}")
if isinstance(key, str):
sliced_frequency = self.frequency[key]
return self.interpolate(sliced_frequency)
if isinstance(key, Frequency):
return self.interpolate(key)
# The following avoids interpolation when the slice is done directly with indices
ntwk = self.copy_subset(key)
return ntwk
def __str__(self) -> str:
"""
"""
f = self.frequency
if self.name is None:
name = ''
else:
name = self.name
_z0 = self.z0
if _z0.ndim < 2:
z0 = _z0
else:
if _z0.size > 0:
z0 = _z0[0, :]
else:
# empty frequency range
z0 = '[]'
output = '%i-Port Network: \'%s\', %s, z0=%s' % (self.number_of_ports, name, str(f), str(z0))
return output
def __repr__(self) -> str:
return self.__str__()
def __len__(self) -> int:
"""
length of frequency axis
"""
return len(self.s)
# INTERNAL CODE GENERATION METHODS
def __compatable_for_scalar_operation_test(self, other:Network) -> None:
"""
Test to make sure other network's s-matrix is of same shape.
"""
if other.frequency != self.frequency:
raise IndexError('Networks must have same frequency. See `Network.interpolate`')
if other.s.shape != self.s.shape:
raise IndexError('Networks must have same number of ports.')
def __getattr__(self, name: str) -> Network:
m = re.match(r"s(\d+)_(\d+)", name)
if not m:
m = re.match(r"s(\d)(\d)", name)
if m:
t0 = int(m.group(1)) - 1
t1 = int(m.group(2)) - 1
ntwk = self.copy()
ntwk.s = self.s[:, t0, t1]
ntwk.z0 = self.z0[:, t0]
return ntwk
raise AttributeError(f'object does not have attribute {name}')
def __dir__(self):
ret = super().__dir__()
s_properties = [f"s{t1+1}_{t2+1}" for t1 in range(self.nports) for t2 in range(self.nports)]
s_properties += [f"s{t1+1}{t2+1}" for t1 in range(min(self.nports, 10)) for t2 in range(min(self.nports, 10))]
return ret + s_properties
def attribute(self, prop_name: PrimaryPropertiesT, conversion: ComponentFuncT) -> np.ndarray:
prop = getattr(self, prop_name)
return self.COMPONENT_FUNC_DICT[conversion](prop)
# PRIMARY PROPERTIES
@property
def s(self) -> np.ndarray:
"""
Scattering parameter matrix.
The s-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so s11 can be accessed by
taking the slice s[:,0,0].
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return self._s
@s.setter
def s(self, s: np.ndarray) -> None:
"""
Scattering parameter matrix.
Parameters
----------
s : :class:`numpy.ndarray`
The input s-matrix should be of shape `fxnxn`,
where f is frequency axis and n is number of ports.
Note that to set this requires that the values are
given in complex format. DB and MA aren't automatically translated
"""
self._s = fix_param_shape(s)
if self.z0.ndim == 0:
self.z0 = self.z0
if len(self.port_modes) != self.nports:
self.port_modes = np.array(["S"] * self.nports)
@property
def s_traveling(self) -> np.ndarray:
"""
Scattering parameter matrix with s_def = 'traveling'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter [#]_ matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'traveling', self.s_def)
@s_traveling.setter
def s_traveling(self, s) -> np.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'traveling')
@property
def s_power(self) -> np.ndarray:
"""
Scattering parameter matrix with s_def = 'power'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter [#]_ matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'power', self.s_def)
@s_power.setter
def s_power(self, s) -> np.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'power')
@property
def s_pseudo(self) -> np.ndarray:
"""
Scattering parameter matrix with s_def = 'pseudo'.
Returns
-------
s : complex :class:`numpy.ndarray` of shape `fxnxn`
The scattering parameter [#]_ matrix.
See Also
--------
s
s_power
s_pseudo
s_traveling
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters
"""
return s2s(self._s, self.z0, 'pseudo', self.s_def)
@s_pseudo.setter
def s_pseudo(self, s) -> np.ndarray:
self.s = s2s(s, self.z0, self.s_def, 'pseudo')
@property
def g(self) -> np.ndarray:
"""
Inverse hybrid parameter matrix.
The g-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fx2x2`, where `f` is frequency axis.
Note that indexing starts at 0, so g11 can be accessed by
taking the slice `g[:,0,0]`.
Returns
-------
g : complex :class:`numpy.ndarray` of shape `fx2x2`
the inverse hybrid parameter matrix.
See Also
--------
s
y
z
t
a
h
References
----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network#Inverse_hybrid_parameters_(g-parameters)
"""
return s2g(self.s, self.z0)
@g.setter
def g(self, value: np.ndarray) -> None:
self._s = g2s(fix_param_shape(value), self.z0)
@property
def h(self) -> np.ndarray:
"""
Hybrid parameter matrix.
The h-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fx2x2`, where `f` is frequency axis.
Note that indexing starts at 0, so h11 can be accessed by
taking the slice `h[:,0,0]`.
Returns
-------
h : complex :class:`numpy.ndarray` of shape `fx2x2`
the hybrid parameter matrix.
See Also
--------
s
y
z
t
a
h
References
----------
.. [#] http://en.wikipedia.org/wiki/Two-port_network#Hybrid_parameters_(h-parameters)
"""
return s2h(self.s, self.z0)
@h.setter
def h(self, value: np.ndarray) -> None:
self._s = h2s(fix_param_shape(value), self.z0)
@property
def y(self) -> np.ndarray:
"""
Admittance parameter matrix.
The y-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so y11 can be accessed by
taking the slice `y[:,0,0]`.
Returns
-------
y : complex :class:`numpy.ndarray` of shape `fxnxn`
the admittance parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
"""
return s2y(self._s, self.z0, s_def=self.s_def)
@y.setter
def y(self, value: np.ndarray) -> None:
self._s = y2s(fix_param_shape(value), self.z0, s_def=self.s_def)
@property
def z(self) -> np.ndarray:
"""
Impedance parameter matrix.
The z-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so z11 can be accessed by
taking the slice `z[:,0,0]`.
Returns
-------
z : complex :class:`numpy.ndarray` of shape `fxnxn`
the Impedance parameter matrix.
See Also
--------
s
y
z
t
a
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
return s2z(self._s, self.z0, s_def=self.s_def)
@z.setter
def z(self, value: np.ndarray) -> None:
self._s = z2s(fix_param_shape(value), self.z0, s_def=self.s_def)
@property
def t(self) -> np.ndarray:
"""
Scattering transfer parameter matrix.
The t-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray`
which has shape `fx2x2`, where `f` is frequency axis.
Note that indexing starts at 0, so t11 can be accessed by
taking the slice `t[:,0,0]`.
The t-matrix, also known as the wave cascading matrix, is
only defined for a 2-port Network.
Returns
-------
t : complex np.ndarray of shape `fx2x2`
t-parameters, aka scattering transfer parameters
See Also
--------
s
y
z
t
a
References
-----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Scattering_transfer_parameters
"""
return s2t(self.s)
@t.setter
def t(self, value: np.ndarray) -> None:
self._s = t2s(fix_param_shape(value))
@property
def s_invert(self) -> np.ndarray:
"""
Inverted scattering parameter matrix.
Inverted scattering parameters are simply inverted s-parameters,
defined as a = 1/s. Useful in analysis of active networks.
The a-matrix is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so a11 can be accessed by
taking the slice a[:,0,0].
Returns
-------
s_inv : complex :class:`numpy.ndarray` of shape `fxnxn`
the inverted scattering parameter matrix.
See Also
--------
s
y
z
t
a
"""
return 1 / self.s
@s_invert.setter
def s_invert(self, value: np.ndarray) -> NoReturn:
raise NotImplementedError
@property
def a(self) -> np.ndarray:
"""
abcd parameter matrix. Used to cascade two-ports.
The abcd-matrix [#]_ is a 3-dimensional :class:`numpy.ndarray` which has shape
`fxnxn`, where `f` is frequency axis and `n` is number of ports.
Note that indexing starts at 0, so abcd11 can be accessed by
taking the slice `abcd[:,0,0]`.
Returns
-------
abcd : complex :class:`numpy.ndarray` of shape `fxnxn`
the Impedance parameter matrix.
See Also
--------
s
y
z
t
a
abcd
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
return s2a(self.s, self.z0)
@a.setter
def a(self, value: np.ndarray) -> None:
self._s = a2s(fix_param_shape(value), self.z0)
@property
def z0(self) -> np.ndarray:
"""
Characteristic impedance[s] of the network ports.
This property stores the characteristic impedance of each port
of the network. Because it is possible that each port has
a different characteristic impedance each varying with
frequency, `z0` is stored internally as a `fxn` array.
However because `z0` is frequently simple (like 50ohm), it can
be set with just number as well.
Returns
-------
z0 : :class:`numpy.ndarray` of shape fxn
characteristic impedance for network
"""
return self._z0
@z0.setter
def z0(self, z0: NumberLike) -> None:
# cast any array like type (tuple, list) to a np.array
z0 = np.array(z0, dtype=complex)
# if _z0 is a vector or matrix, we check if _s is already assigned.
# If not, we cannot proof the correct dimensions and silently accept
# any vector or fxn array
if not hasattr(self, '_s'):
self._z0 = z0
return
# if _z0 is a scalar, we broadcast to the correct shape.
#
# if _z0 is a vector, we check if the dimension matches with either
# nports or frequency.npoints. If yes, we accept the value.
# Note that there can be an ambiguity in theory, if nports == npoints
#
# if _z0 is a matrix, we check if the shape matches with _s
# In any other case raise an Exception
self._z0 = np.empty(self.s.shape[:2], dtype=complex)
if z0.ndim == 0:
self._z0[:] = z0
elif z0.ndim == 1 and z0.shape[0] == self.s.shape[0]:
self._z0[:] = z0[:, None]
elif z0.ndim == 1 and z0.shape[0] == self.s.shape[1]:
self._z0[:] = z0[None, :]
elif z0.shape == self.s.shape[:2]:
self._z0 = z0
else:
raise AttributeError(f'Unable to broadcast z0 shape {z0.shape} to s shape {self.s.shape}.')
@property
def frequency(self) -> Frequency:
"""
Frequency information for the network.
This property is a :class:`~skrf.frequency.Frequency` object.
It holds the frequency vector, as well frequency unit, and
provides other properties related to frequency information, such
as start, stop, etc.
Returns
-------
frequency : :class:`~skrf.frequency.Frequency` object
frequency information for the network.
See Also
--------
f : property holding frequency vector in Hz
change_frequency : updates frequency property, and
interpolates s-parameters if needed
interpolate : interpolate function based on new frequency
info
"""
try:
return self._frequency
except (AttributeError):
self._frequency = Frequency(0, 0, 0, unit='Hz')
return self._frequency
@frequency.setter
def frequency(self, new_frequency: Frequency | int | Sequence[float] | np.ndarray) -> None:
"""
Take a Frequency object, see frequency.py.
"""
if isinstance(new_frequency, Frequency):
self._frequency = new_frequency.copy()
else:
try:
self._frequency = Frequency.from_f(new_frequency, unit=self.frequency.unit)
except TypeError as err:
raise TypeError('Could not convert argument to a frequency vector') from err
@property
def inv(self) -> Network:
"""
A :class:`Network` object with 'inverse' s-parameters.
This is used for de-embedding.
It is defined such that the inverse of the s-matrix cascaded with itself
is a unity scattering transfer parameter (T) matrix.
Returns
-------
inv : a :class:`Network` object
a :class:`Network` object with 'inverse' s-parameters.
See Also
--------
inv : function which implements the inverse s-matrix
"""
if self.number_of_ports < 2:
raise (TypeError('One-Port Networks don\'t have inverses'))
out = self.copy()
out.s = inv(self.s)
# flip the port impedances, nports is even guaranteed by inv() method
port_pairs: int = self.nports // 2
out.z0[:, :port_pairs] = self.z0[:, port_pairs:]
out.z0[:, port_pairs:] = self.z0[:, :port_pairs]
out.deembed = True
return out
@property
def f(self) -> np.ndarray:
"""
The frequency vector for the network, in Hz.
Returns
-------
f : :class:`numpy.ndarray`
frequency vector in Hz
See Also
--------
frequency : frequency property that holds all frequency
information
"""
return self.frequency.f
@f.setter
def f(self, f: NumberLike | Frequency) -> None:
warnings.warn('frequency.f parameter will be immutable in the next release.',
DeprecationWarning, stacklevel=2)
if isinstance(f, Frequency):
self.frequency = f
else:
tmpUnit = self.frequency.unit
self.frequency = Frequency.from_f(f, unit=tmpUnit)
@property
def noisy(self) -> bool:
"""
Whether this network has noise.
"""
return self.noise is not None and self.noise_freq is not None
@property
def n(self) -> np.ndarray:
"""
The ABCD form of the noise correlation matrix for the network.
"""
if not self.noisy:
raise ValueError('network does not have noise')
if self.noise_freq.f.size > 1:
noise_real = interp1d(
self.noise_freq.f,
self.noise.real,
axis=0,
kind=self.noise_interp_kind,
bounds_error=False,
fill_value=complex(self.noise_fill_value).real
)
noise_imag = interp1d(
self.noise_freq.f,
self.noise.imag,
axis=0,
kind=self.noise_interp_kind,
bounds_error=False,
fill_value=complex(self.noise_fill_value).imag
)
return noise_real(self.frequency.f) + 1.0j * noise_imag(self.frequency.f)
else:
noise_real = self.noise.real
noise_imag = self.noise.imag
return noise_real + 1.0j * noise_imag
@property
def f_noise(self) -> Frequency:
"""
The frequency vector for the noise of the network, in Hz.
"""
if not self.noisy:
raise ValueError('network does not have noise')
return self.noise_freq
@property
def y_opt(self) -> np.ndarray:
"""
The optimum source admittance to minimize noise.
"""
noise = self.n
return (np.sqrt(noise[:,1,1]/noise[:,0,0] - np.square(np.imag(noise[:,0,1]/noise[:,0,0])))
+ 1.j*np.imag(noise[:,0,1]/noise[:,0,0]))
@property
def z_opt(self) -> np.ndarray:
"""
The optimum source impedance to minimize noise.
"""
return 1./self.y_opt
@property
def g_opt(self) -> np.ndarray:
"""
The optimum source reflection coefficient to minimize noise.
"""
return z2s(self.z_opt.reshape((self.f.shape[0], 1, 1)), self.z0[:,0])[:,0,0]
@property
def nfmin(self) -> np.ndarray:
"""
The minimum noise figure for the network.
"""
noise = self.n
return np.real(1. + (noise[:,0,1] + noise[:,0,0] * np.conj(self.y_opt))/(2*K_BOLTZMANN*T0))
@property
def nfmin_db(self) -> np.ndarray:
"""
The minimum noise figure for the network in dB.
"""
return mf.complex_2_db10(self.nfmin)
def nf(self, z: NumberLike) -> np.ndarray:
"""
The noise figure for the network if the source impedance is z.
"""
y_opt = self.y_opt
fmin = self.nfmin
rn = self.rn
ys = 1./z
gs = np.real(ys)
return fmin + rn/gs * np.square(np.absolute(ys - y_opt))
def nfdb_gs(self, gs: NumberLike) -> np.ndarray:
"""
Return dB(NF) foreach gamma_source x noise_frequency.
"""
g = self.copy().s11
nfreq = self.noise_freq.npoints
if isinstance(gs, int | float | complex):
g.s[:,0,0] = gs
nfdb = 10.*np.log10(self.nf( g.z[:,0,0]))
elif isinstance(gs, np.ndarray) :
npt = gs.shape[0]
z = self.z0[0,0] * (1+gs)/(1-gs)
zf = np.broadcast_to(z[:,None], tuple((npt, nfreq)))
nfdb = 10.*np.log10(self.nf( zf))
else :
g.s[:,0,0] = -1
nfdb = 10.*np.log10(self.nf( g.z[:,0,0]))
return nfdb
@property
def rn(self) -> np.ndarray:
"""
The equivalent noise resistance for the network.
"""
return np.real(self.n[:,0,0]/(4.*K_BOLTZMANN*T0))
# SECONDARY PROPERTIES
@property
def number_of_ports(self) -> int:
"""
The number of ports the network has.
Returns
-------
number_of_ports : number
the number of ports the network has.
"""
try:
return self.s.shape[1]
except (AttributeError):
return 0
@property
def nports(self) -> int:
"""
The number of ports the network has.
Returns
-------
number_of_ports : number
the number of ports the network has.
"""
return self.number_of_ports
@property
def port_modes(self) -> np.ndarray:
"""
Array of size nports with the mode of each port.
This information is used to store mixed-modes networks in touchstone
V2 format or to plot trace name with subscript like 'Sdd11'.
* 'C': common
* 'D': differential
* 'S': single-ended
Returns
-------
port_modes : :class:`numpy.ndarray`
port modes
"""
return self._port_modes
@port_modes.setter
def port_modes(self, port_modes: np.ndarray) -> None:
self._port_modes = port_modes
@property
def port_tuples(self) -> list[tuple[int, int]]:
"""
Returns a list of tuples, for each port index pair.
A convenience function for the common task for iterating over
all s-parameters index pairs.
This just calls::
[(y,x) for x in range(self.nports) for y in range(self.nports)]
Returns
-------
ports_ind : list of tuples
list of all port index tuples.
Examples
--------
>>> ntwk = skrf.data.ring_slot
>>> for (idx_i, idx_j) in ntwk.port_tuples: print(idx_i, idx_j)
"""
return [(y, x) for x in range(self.nports) for y in range(self.nports)]
@property
def passivity(self) -> ndarray:
r"""
Passivity metric for a multi-port network.
This returns a matrix who's diagonals are equal to the total
power received at all ports, normalized to the power at a single
excitement port.
Mathematically, this is a test for unitary-ness of the
s-parameter matrix [#]_.
For two port this is
.. math::
( |S_{11}|^2 + |S_{21}|^2 \, , \, |S_{22}|^2+|S_{12}|^2)
in general it is
.. math::
S^H \cdot S
where :math:`H` is conjugate transpose of S, and :math:`\cdot`
is dot product.
Returns
-------
passivity : :class:`numpy.ndarray` of shape fxnxn
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Lossless_networks
"""
return passivity(self.s)
@property
def reciprocity(self) -> np.ndarray:
"""
Reciprocity metric for a multi-port network.
This returns the difference between the s-parameter matrix
and its transpose.
For two port this is
.. math::
S - S^T
where :math:`T` is transpose of S
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
return reciprocity(self.s)
@property
def reciprocity2(self) -> np.ndarray:
"""
Reciprocity metric #2
.. math::
abs(1 - S/S^T )
for the two port case, this evaluates to the distance of the
determinant of the wave-cascading matrix from unity.
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
return abs(1 - self.s / self.s.swapaxes(1, 2))
@property
def stability(self) -> np.ndarray:
"""
Stability factor.
.. math::
K = ( 1 - |S_{11}|^2 - |S_{22}|^2 + |D|^2 ) / (2 * |S_{12}| * |S_{21}|)
with
D = S_{11} S_{22} - S_{12} S_{21}
Returns
-------
K : :class:`numpy.ndarray` of shape `f`
See Also
--------
stability_circle
"""
if self.nports != 2:
raise ValueError("Stability factor K is only defined for two ports")
D = self.s[:, 0, 0] * self.s[:, 1, 1] - self.s[:, 0, 1] * self.s[:, 1, 0]
denom = 2 * np.abs(self.s[:, 0, 1]) * np.abs(self.s[:, 1, 0])
num = (1 - np.abs(self.s[:, 0, 0]) ** 2 - np.abs(self.s[:, 1, 1]) ** 2 + np.abs(D) ** 2)
infs = np.full(num.shape, np.inf)
# Handle divide by zero
K = np.divide(num, denom, out=infs, where=denom!=0)
return K
@property
def max_stable_gain(self) -> np.ndarray:
r"""
Maximum stable power gain [1]_ (in linear).
.. math::
G_{ms} = |S_{21}| / |S_{12}|
Returns
-------
gms : :class:`numpy.ndarray` of shape `f`
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992,
doi: 10.1109/22.137392.
See Also
--------
max_gain : Maximum available and stable power gain
unilateral_gain : Mason's unilateral power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Maximum stable gain is only defined for two ports")
gms = np.abs(self.s[:, 1, 0]) / np.abs(self.s[:, 0, 1])
return gms
@property
def max_gain(self) -> np.ndarray:
r"""
Maximum available power gain for K > 1 and maximum stable power gain for K <= 1 (in linear).
.. math::
G_{max}|_{K>1} = \frac{|S_{21}|}{|S_{12}|} \times \frac{1}{K + \sqrt{K^2 - 1}}
G_{max}|_{K<=1} = \frac{|S_{21}|}{|S_{12}|}
Returns
-------
gmax : :class:`numpy.ndarray` of shape `f`
Note
----
The maximum available power gain is defined for a unconditionally stable network (K > 1).
For K <= 1, this property returns the maximum stable gain instead.
This behavior is similar to the max_gain() function in Keysight's Advanced Design System
(but differs in decibel or linear) [1]_ [2]_ [3]_.
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992,
doi: 10.1109/22.137392.
.. [2] https://www.microwaves101.com/encyclopedias/stability-factor
.. [3] https://edadocs.software.keysight.com/pages/viewpage.action?pageId=5920581
See Also
--------
max_stable_gain : Maximum stable power gain
unilateral_gain : Mason's unilateral power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Max gain is only defined for two ports")
K = self.stability
K_clipped = np.clip(K, 1, None)
gmax = self.max_stable_gain / (K_clipped + np.sqrt(np.square(K_clipped) - 1))
return gmax
@property
def unilateral_gain(self) -> np.ndarray:
r"""
Mason's unilateral power gain [1]_ (in linear).
.. math::
U = \frac{| \frac{S_{21}}{S_{12}} - 1| ^ 2}{2K \frac{|S_{21}|}{|S_{12}|} - 2Re(\frac{S_{21}}{S_{12}})}
Returns
-------
U : :class:`numpy.ndarray` of shape `f`
References
----------
.. [1] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992,
doi: 10.1109/22.137392.
See Also
--------
max_stable_gain : Maximum stable power gain
max_gain : Maximum available and stable power gain
stability : Stability factor
"""
if self.nports != 2:
raise ValueError("Unilateral gain is only defined for two ports")
K = self.stability
gms = self.max_stable_gain
U = (np.abs((self.s[:, 1, 0] / self.s[:, 0, 1]) - 1) ** 2
/ (2 * K * gms - 2 * np.real(self.s[:, 1, 0] / self.s[:, 0, 1])))
return U
@property
def group_delay(self) -> np.ndarray:
"""
Group delay.
Usually used as a measure of dispersion (or distortion).
Defined as the derivative of the unwrapped s-parameter phase
(in rad) with respect to the frequency::
-d(self.s_rad_unwrap)/d(self.frequency.w)
Returns
-------
gd : :class:`numpy.ndarray` of shape `xnxn`
References
----------
https://en.wikipedia.org/wiki/Group_delay_and_phase_delay
"""
gd = self.s * 0 # quick way to make a new array of correct shape
phi = self.s_rad_unwrap
dw = self.frequency.dw
for m, n in self.port_tuples:
dphi = gradient(phi[:, m, n])
gd[:, m, n] = -dphi / dw
return gd
## NETWORK CLASSIFIERs
def is_reciprocal(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for reciprocity.
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`.
Returns
-------
bool : boolean
See Also
--------
reciprocity
"""
return np.allclose(reciprocity(self.s), np.zeros_like(self.s), atol=tol)
def is_symmetric(self, n: int = 1, port_order: dict[int, int] = None, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Return whether the 2N-port network has n-th order reflection symmetry by checking.
:math:`S_{i,i} == S_{j,j}` for appropriate pair(s) of :math:`i` and :math:`j`.
Parameters
----------
n : int
Order of line symmetry to test for
port_order : dict[int, int]
Renumbering of zero-indexed ports before testing
tol : float
Tolerance in numeric comparisons. Default is :data:`skrf.mathFunctions.ALMOST_ZERO`.
Returns
-------
bool : boolean
Raises
------
ValueError
(1) If the network has an odd number of ports
(2) If n is not in the range 1 to N
(3) If n does not evenly divide 2N
(4) If port_order is not a valid reindexing of ports
e.g. specifying x->y but not y->z, specifying x->y twice,
or using an index outside the range 0 to 2N-1
References
----------
https://en.wikipedia.org/wiki/Two-port_network#Scattering_parameters_(S-parameters)
"""
if port_order is None:
port_order = {}
nfreqs, ny, nx = self.s.shape # nfreqs is number of frequencies, and nx, ny both are number of ports (2N)
if nx % 2 != 0 or nx != ny:
raise ValueError('Using is_symmetric() is only valid for a 2N-port network (N=2,4,6,8,...)')
n_ports = nx // 2
if n <= 0 or n > n_ports:
raise ValueError('specified order n = ' + str(n) + ' must be ' +
'between 1 and N = ' + str(n_ports) + ', inclusive')
if nx % n != 0:
raise ValueError('specified order n = ' + str(n) + ' must evenly divide ' +
'N = ' + str(n_ports))
from_ports = list(map(lambda key: int(key), port_order.keys()))
to_ports = list(map(lambda val: int(val), port_order.values()))
test_network = self.copy() # TODO: consider defining renumbered()
if len(from_ports) > 0 and len(to_ports) > 0:
test_network.renumber(from_ports, to_ports)
offs = np.array(range(0, n_ports)) # port index offsets from each mirror line
for k in range(0, n_ports, n_ports // n): # iterate through n mirror lines
mirror = k * np.ones_like(offs)
i = mirror - 1 - offs
j = mirror + offs
if not np.allclose(test_network.s[:, i, i], test_network.s[:, j, j], atol=tol):
return False
return True
def is_passive(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for passivity.
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`
Returns
-------
bool : boolean
"""
try:
M = np.square(self.passivity)
except ValueError:
return False
I = np.identity(M.shape[-1])
for f_idx in range(len(M)):
D = I - M[f_idx, :, :] # dissipation matrix
if not mf.is_positive_definite(D) \
and not mf.is_positive_semidefinite(mat=D, tol=tol):
return False
return True
def is_lossless(self, tol: float = mf.ALMOST_ZERO) -> bool:
"""
Test for losslessness.
[S] is lossless if [S] is unitary, i.e. if :math:`([S][S]^* = [1])`
Parameters
----------
tol : float, optional
Numerical tolerance. The default is :data:`skrf.mathFunctions.ALMOST_ZERO`
Returns
-------
bool : boolean
See Also
--------
is_passive, is_symmetric, is_reciprocal
References
----------
https://en.wikipedia.org/wiki/Unitary_matrix
"""
for f_idx in range(len(self.s)):
mat = self.s[f_idx, :, :]
if not mf.is_unitary(mat, tol=tol):
return False
return True
## CLASS METHODS
def copy(self, *, shallow_copy: bool = False) -> Network:
"""
Return a copy of this Network.
Needed to allow pass-by-value for a Network instead of
pass-by-reference
Parameters
----------
shallow_copy : bool, optional
If True, the method creates a new Network object with empty s-parameters that share the same shape
as the original Network, but without copying the actual s-parameters data. This is useful when you
plan to immediately modify the s-parameters after creating the Network, as a deep copy would be
unnecessary and costly. Using `shallow_copy` improves performance by leveraging lazy initialization
through `numpy's np.empty()`, which allocates virtual memory without immediate physical memory
allocation, deferring actual memory initialization until first access. This approach can significantly
enhance `copy()` performance when dealing with large `Network` objects, when you are intended for
immediate modification after the Network's creation.
Note
----
If you require a complete copy of the `Network` instance or need to perform operation on the s-parameters
of the copied Network, it is essential not to use the `shallow_copy` parameter!
Returns
-------
ntwk : :class:`Network`
Copy of the Network
"""
ntwk = Network(z0=self.z0, s_def=self.s_def, comments=self.comments)
ntwk._s = (
np.empty(shape=self.s.shape, dtype=self.s.dtype)
if shallow_copy
else self.s.copy()
)
ntwk.frequency._f = self.frequency._f.copy()
ntwk.frequency.unit = self.frequency.unit
ntwk.port_modes = self.port_modes.copy()
if self.params is not None:
ntwk.params = self.params.copy()
ntwk.name = self.name
if self.noise is not None and self.noise_freq is not None:
ntwk.noise = self.noise.copy()
ntwk.noise_freq = self.noise_freq.copy()
# copy special attributes (such as _is_circuit_port) but skip methods
ntwk._ext_attrs = self._ext_attrs.copy()
try:
ntwk.port_names = copy(self.port_names)
except(AttributeError):
ntwk.port_names = None
return ntwk
def copy_from(self, other: Network) -> None:
"""
Copy the contents of another Network into self.
Uses copy, so that the data is passed-by-value, not reference
Parameters
----------
other : Network
the network to copy the contents of
Examples
--------
>>> a = rf.N()
>>> b = rf.N('my_file.s2p')
>>> a.copy_from (b)
"""
for attr in ['_s', 'frequency', '_z0', 'name']:
setattr(self, attr, copy(getattr(other, attr)))
def copy_subset(self, key: np.ndarray) -> Network:
"""
Return a copy of a frequency subset of this Network.
Needed to allow pass-by-value for a subset Network instead of
pass-by-reference
Parameters
-----------
key : numpy array
the array indices of the frequencies to take
Returns
-------
ntwk : :class:`Network`
Copy of the frequency subset of the Network
"""
ntwk = Network(s=self.s[key,:],
frequency=self.frequency[key].copy(),
z0=self.z0[key,:],
)
if isinstance(self.name, str):
ntwk.name = self.name + '_subset'
else:
ntwk.name = self.name
if self.noise is not None and self.noise_freq is not None:
ntwk.noise = np.copy(self.noise[key,:])
ntwk.noise_freq = copy(self.noise_freq[key])
try:
ntwk.port_names = copy(self.port_names)
except(AttributeError):
ntwk.port_names = None
return ntwk
def drop_non_monotonic_increasing(self) -> None:
"""
Drop invalid values based on duplicate and non increasing frequency values.
Example
-------
The following example shows how to use the :func:`drop_non_monotonic_increasing`
automatically, if invalid frequency data is detected and an
:class:`~skrf.frequency.InvalidFrequencyWarning` is thrown.
>>> import warnings
>>> import skrf as rf
>>> from skrf.frequency import InvalidFrequencyWarning
>>> with warnings.catch_warnings(record=True) as warns:
>>> net = rf.Network('corrupted_network.s2p')
>>> w = [w for w in warns if issubclass(w.category, InvalidFrequencyWarning)]
>>> if w:
>>> net.drop_non_monotonic_increasing()
"""
idx = self.frequency.drop_non_monotonic_increasing()
# z0 getter and setter depend on s.shape matching z0.shape.
# Call z0 getter and setter only when s and z0 shapes match.
z0_new = np.delete(self.z0, idx, axis=0)
self.s = np.delete(self.s, idx, axis=0)
self.z0 = z0_new
if self.noisy:
idx = self.noise_freq.drop_non_monotonic_increasing()
self.noise = np.delete(self.noise, idx, axis=0)
def set_noise_a(self, noise_freq: Frequency = None, nfmin_db: float = 0,
gamma_opt: float = 0, rn: NumberLike = 1 ) -> None:
"""
Set the "A" (ie cascade) representation of the correlation matrix, based on the
noise frequency and input parameters.
"""
sh_fr = noise_freq.f.shape
nfmin_db = np.broadcast_to(np.atleast_1d(nfmin_db), sh_fr)
gamma_opt = np.broadcast_to(np.atleast_1d(gamma_opt), sh_fr)
rn = np.broadcast_to(np.atleast_1d(rn), sh_fr)
nf_min = np.power(10., nfmin_db/10.)
# TODO maybe interpolate z0 as above
y_opt = 1./(self.z0[0, 0] * (1. + gamma_opt)/(1. - gamma_opt))
noise = 4.*K_BOLTZMANN*T0*np.array(
[[rn, (nf_min-1.)/2. - rn*np.conj(y_opt)],
[(nf_min-1.)/2. - rn*y_opt, np.square(np.absolute(y_opt)) * rn]]
)
self.noise = noise.swapaxes(0, 2).swapaxes(1, 2)
self.noise_freq = noise_freq
# touchstone file IO
def read_touchstone(self, filename: str | Path | TextIO,
encoding: str | None = None) -> None:
"""
Load values from a touchstone file.
The work of this function is done through the
:class:`~skrf.io.touchstone` class.
Parameters
----------
filename : str, Path, or file-object
touchstone file name.
encoding : str, optional
define the file encoding to use. Default value is None,
meaning the encoding is guessed.
Note
----
Only the scattering parameters format is supported at the moment.
"""
from .io import touchstone
touchstoneFile = touchstone.Touchstone(filename, encoding=encoding)
self.comments = touchstoneFile.get_comments()
self.comments_after_option_line = touchstoneFile.comments_after_option_line
self.variables = touchstoneFile.get_comment_variables()
self.port_names = touchstoneFile.port_names
f, self.s = touchstoneFile.get_sparameter_arrays() # note: freq in Hz
self.frequency = Frequency.from_f(f, unit='hz')
self.frequency.unit = touchstoneFile.frequency_unit
self.gamma = touchstoneFile.gamma
self.z0 = touchstoneFile.z0
self.s_def = touchstoneFile.s_def if self.s_def is None else self.s_def
self.port_modes = touchstoneFile.port_modes
if touchstoneFile.noise is not None:
noise_freq = touchstoneFile.noise[:, 0]
nfmin_db = touchstoneFile.noise[:, 1]
gamma_opt_mag = touchstoneFile.noise[:, 2]
gamma_opt_angle = np.deg2rad(touchstoneFile.noise[:, 3])
# TODO maybe properly interpolate z0?
# it probably never actually changes
if touchstoneFile.version == '1.0':
rn = touchstoneFile.noise[:, 4] * self.z0[0, 0]
else:
rn = touchstoneFile.noise[:, 4]
gamma_opt = gamma_opt_mag * np.exp(1j * gamma_opt_angle)
# use the voltage/current correlation matrix; this works nicely with
# cascading networks
self.noise_freq = Frequency.from_f(noise_freq, unit='hz')
self.noise_freq.unit = touchstoneFile.frequency_unit
self.set_noise_a(self.noise_freq, nfmin_db, gamma_opt, rn)
if self.name is None:
try:
self.name = os.path.basename(os.path.splitext(filename)[0])
# this may not work if filename is a file object
except(AttributeError, TypeError):
# in case they pass a file-object instead of file name,
# get the name from the touchstone file
self.name = os.path.basename(os.path.splitext(touchstoneFile.filename)[0])
@classmethod
def zipped_touchstone(cls, filename: str | Path, archive: zipfile.ZipFile) -> Network:
"""
Read a Network from a Touchstone file in a ziparchive.
Parameters
----------
filename : str
the full path filename of the touchstone file
archive : zipfile.ZipFile
the opened zip archive
Returns
-------
ntwk : :class:`Network`
Network from the Touchstone file
"""
# Convert a path filename to a string
filename = str(filename.resolve()) if isinstance(filename, Path) else filename
# Touchstone requires file objects to be seekable (for get_gamma_z0_from_fid)
# A ZipExtFile object is not seekable prior to Python 3.7, so use StringIO
# and manually add a name attribute
fileobj = io.StringIO(archive.open(filename).read().decode('UTF-8'))
fileobj.name = filename
ntwk = Network(fileobj)
return ntwk
def write_touchstone(self, filename: str | Path = None, dir: str | Path = None,
write_z0: bool = False, skrf_comment: bool = True,
return_string: bool = False, to_archive: bool = None,
form: SparamFormatT = 'ri', format_spec_A: str = '{}', format_spec_B: str = '{}',
format_spec_freq: str = '{}', r_ref: float = None,
format_spec_nf_freq: str = '{}', format_spec_nf_min: str = '{}',
format_spec_g_opt_mag: str = '{}', format_spec_g_opt_phase: str = '{}',
format_spec_rn: str = '{}', write_noise: bool = True,
parameter: Literal["S", "Y", "Z", "G", "H"] = "S") -> str | None:
"""
Write a contents of the :class:`Network` to a touchstone file.
Parameters
----------
filename : a string or Path, optional
touchstone filename, without extension. if 'None', then
will use the network's :attr:`name`.
dir : string or Path, optional
the directory to save the file in.
write_z0 : boolean
write impedance information into touchstone as comments,
like Ansoft HFSS does
skrf_comment : bool, optional
write `created by skrf <version>` comment
return_string : bool, optional
return the file_string rather than write to a file
to_archive : zipfile.Zipfile
opened ZipFile object to place touchstone file in
form : string
format to write data:
'db': db, deg. 'ma': mag, deg. 'ri': real, imag.
format_spec_A : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the A part of the S parameter,
(e.g. the dB magnitude for 'db' format, the linear
magnitude for 'ma' format, or the real part for 'ri' format)
format_spec_B : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the B part of the S parameter,
(e.g. the angle in degrees for 'db' format,
the angle in degrees for 'ma' format, or the imaginary part for 'ri' format)
format_spec_freq : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the frequency.
r_ref : float
Reference impedance to renormalize the network.
If None network port impedance is used if possible. If None and
network port impedance is complex and not equal at all ports and
frequency points raises ValueError.
format_spec_nf_freq : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the noise data frequency.
format_spec_nf_min : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the minimum NF.
format_spec_g_opt_mag : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the GammaOpt magnitude.
format_spec_g_opt_phase : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the GammaOpt phase.
format_spec_rn : string, optional
Any valid format specifying string as given by
https://docs.python.org/3/library/string.html#format-string-syntax
This specifies the formatting in the resulting touchstone file for the noise resistance.
write_noise : bool, optional
Write noise parameters.
parameter : string
Specify the network parameter ("S", "Y", "Z", "G", "H") to write, defaults to "S".
"G" and "H" is only available for 2-port Networks.
Note
----
Format supported at the moment are [Hz/kHz/MHz/GHz] S [DB/MA/RI]
Frequency unit can be changed by setting Network.frequency.unit property
Note
----
The functionality of this function should take place in the
:class:`~skrf.io.touchstone.Touchstone` class.
"""
# according to Touchstone 2.0 spec
# [no tab, max. 4 coeffs per line, etc.]
have_complex_ports = np.any(self.z0.imag != 0)
equal_z0 = np.all(self.z0 == self.z0[0, 0])
ntwk = self.copy()
if r_ref is None and not write_z0:
if not equal_z0:
raise ValueError(
"Network has unequal port impedances but reference impedance for renormalization"
" 'r_ref' is not specified."
)
if have_complex_ports:
raise ValueError(
"Network port impedances are complex but reference impedance for renormalization"
" 'r_ref' is not specified."
)
r_ref = ntwk.z0[0, 0]
elif r_ref is not None:
if not np.isscalar(r_ref):
raise ValueError('r_ref must be scalar')
if r_ref.imag != 0:
raise ValueError('r_ref must be real')
ntwk.renormalize(r_ref)
if filename is None:
if ntwk.name is not None:
filename = ntwk.name
else:
raise ValueError('No filename given. Network must have a name, or you must provide a filename')
# set internal variables according to form
form = form.lower()
parameter = parameter.upper()
if parameter not in ["S", "Y", "Z", "G", "H"] or (parameter in ["G", "H"] and ntwk.nports != 2):
msg = f"Invalid network parameter {parameter}"
raise AttributeError(msg)
pdata = ntwk.s
if parameter != "S":
pdata = globals()[f"s2{parameter.lower()}"](pdata, 1)
if get_extn(filename) is None:
if isinstance(filename, Path):
filename = str(filename.resolve())
filename = f"{filename}.{parameter.lower()}{ntwk.nports}p"
if dir is not None:
filename = os.path.join(dir, filename)
# Create format string for full frequency block
# Build according to touchstone specs:
# - One line for each matrix row with 4 format_spec_A / format_spec_B pairs max.
# - Frequency with format_spec_freq on the first line
# - continuation lines (anything except first) go with indent
# this is not part of the spec, but many tools handle it this way
# -> allows to parse without knowledge of number of ports
# Special case for 2-port networks:
# single line, and S21, S12 in reverse order by transposing matrix
fmt_str = format_spec_freq
for _ in range(ntwk.number_of_ports if ntwk.number_of_ports > 2 else 1):
for n in range(ntwk.number_of_ports if ntwk.number_of_ports != 2 else 4):
if (n > 0 and (n % 4) == 0):
fmt_str += '\n'
fmt_str += f' {format_spec_A} {format_spec_B}'
fmt_str += '\n'
if ntwk.number_of_ports == 2:
# transpose matrix:
pdata = np.transpose(pdata, (0, 2, 1))
# expand complex numbers into real parts according to form
# creating a new array with shape (nfreqs, nports, nports*2)
if form == "ri":
formatDic = {"labelA": "Re", "labelB": "Im", "param": parameter}
data = np.ascontiguousarray(pdata).view(float)
elif form == "db":
formatDic = {"labelA": "dB", "labelB": "ang", "param": parameter}
data = np.empty((pdata.shape[0], pdata.shape[1], pdata.shape[2] * 2), dtype='float64')
data[:, :, 0::2] = mf.complex_2_db(pdata)
data[:, :, 1::2] = mf.complex_2_degree(pdata)
elif form == "ma":
formatDic = {"labelA": "mag", "labelB": "ang", "param": parameter}
data = np.empty((pdata.shape[0], pdata.shape[1], pdata.shape[2] * 2), dtype='float64')
data[:, :, 0::2] = mf.complex_2_magnitude(pdata)
data[:, :, 1::2] = mf.complex_2_degree(pdata)
else:
raise ValueError('`form` must be either `db`,`ma`,`ri`')
# flatten inner two dimensions and combining with frequency column:
# array with one line per frequency point
data = np.column_stack([ntwk.frequency.f_scaled, data.reshape((data.shape[0],-1))])
def get_buffer() -> io.StringIO:
if return_string is True or type(to_archive) is zipfile.ZipFile:
from .io.general import StringBuffer # avoid circular import
buf = StringBuffer()
else:
buf = open(filename, "w")
return buf
with get_buffer() as output:
# Add '!' Touchstone comment delimiters to the start of every line in ntwk.comments
commented_header = ''
try:
if ntwk.comments:
for comment_line in ntwk.comments.split('\n'):
commented_header += f'!{comment_line}\n'
except AttributeError:
pass
if skrf_comment:
commented_header += '! Created with skrf ' + __version__ + ' (http://scikit-rf.org).\n'
output.write(commented_header)
# write header file.
# the '#' line is NOT a comment it is essential and it must be
# exactly this format, to work
# [HZ/KHZ/MHZ/GHZ] [S/Y/Z/G/H] [MA/DB/RI] [R n]
if write_z0:
output.write('! Data is not renormalized\n')
output.write(f'! S-parameter uses the {self.s_def} definition\n')
output.write(f'# {ntwk.frequency.unit} {parameter} {form.upper()} R\n')
else:
# Write "r_ref.real" instead of "r_ref", so we get a real number "a" instead
# of a complex number "(a+0j)", which is unsupported by the standard Touchstone
# format (non-HFSS). We already checked in the beginning that "r_ref" must be
# real in this case (write_z0 == False).
assert r_ref.imag == 0, "Complex reference impedance is encountered when " \
"generating a standard Touchstone (non-HFSS), this " \
"should never happen in scikit-rf."
output.write(f'# {ntwk.frequency.unit} {parameter} {form.upper()} R {r_ref.real} \n')
# write ports
try:
if ntwk.port_names and len(ntwk.port_names) == ntwk.number_of_ports:
ports = ''
for port_idx, port_name in enumerate(ntwk.port_names):
ports += f'! Port[{port_idx+1}] = {port_name}\n'
output.write(ports)
except AttributeError:
pass
if ntwk.number_of_ports == 2:
# 2-port is a special case with
# - single line, and
# - S21,S12 in reverse order: legacy ?
# write comment line for users (optional)
output.write(
("!freq {labelA}{param}11 {labelB}{param}11 {labelA}{param}21 {labelB}{param}21 "
"{labelA}{param}12 {labelB}{param}12 {labelA}{param}22 {labelB}{param}22\n").format(
**formatDic))
else:
# general n-port
# - matrix is written line by line
# - 4 complex numbers / 8 real numbers max. for a single line
# - continuation lines (anything except first) go with indent
# this is not part of the spec, but many tools handle it this way
# -> allows to parse without knowledge of number of ports
# write comment line for users (optional)
output.write('!freq')
for m in range(1, 1 + ntwk.number_of_ports):
for n in range(1, 1 + ntwk.number_of_ports):
if (n > 0 and (n % 4) == 0):
output.write('\n!')
output.write(" {labelA}{param}{m}{n} {labelB}{param}{m}{n}".format(m=m, n=n, **formatDic))
output.write('\n!')
output.write('\n')
# write out data one frequency at a time
for f in range(len(ntwk.f)):
output.write(fmt_str.format(*data[f]))
if write_z0:
output.write('! Port Impedance')
for n in range(ntwk.number_of_ports):
output.write(f' {ntwk.z0[f, n].real:.14f} {ntwk.z0[f, n].imag:.14f}')
output.write('\n')
if ntwk.number_of_ports == 2:
# write noise data if it exists
if ntwk.noisy and write_noise:
self._write_noisedata(output, format_spec_nf_freq, format_spec_nf_min,
format_spec_g_opt_mag, format_spec_g_opt_phase,
format_spec_rn)
if type(to_archive) is zipfile.ZipFile:
to_archive.writestr(filename, output.getvalue())
elif return_string is True:
return output.getvalue()
return None
def _write_noisedata(self, output, format_spec_nf_freq: str = '{}', format_spec_nf_min: str = '{}',
format_spec_g_opt_mag: str = '{}', format_spec_g_opt_phase: str = '{}',
format_spec_rn: str = '{}'):
ntwk = self.copy()
output.write("! Noise Data\n! freq\tnf_min_db\tmagGOpt\tdegGOpt\tRn_eff\n")
new = ntwk.copy()
new.resample(ntwk.f_noise) # only write data from original noise freqs
for f, nf, g_opt, rn, z0 in zip(new.f_noise.f_scaled, new.nfmin_db, new.g_opt, new.rn, new.z0):
output.write(format_spec_nf_freq.format(f) + ' ' \
+ format_spec_nf_min.format(nf) + ' ' \
+ format_spec_g_opt_mag.format(mf.complex_2_magnitude(g_opt)) + ' ' \
+ format_spec_g_opt_phase.format(mf.complex_2_degree(g_opt)) + ' ' \
+ format_spec_rn.format(rn/z0[0].real) + ' ' "\n")
def write(self, file: str | Path = None, *args, **kwargs) -> None:
r"""
Write the Network to disk using the :mod:`pickle` module.
The resultant file can be read either by using the Networks
constructor, :func:`__init__` , the read method :func:`read`, or
the general read function :func:`skrf.io.general.read`
Parameters
----------
file : str, Path, or file-object
filename or a file-object. If left as None then the
filename will be set to Network.name, if its not None.
If both are None, ValueError is raised.
\*args, \*\*kwargs :
passed through to :func:`~skrf.io.general.write`
Note
----
If the self.name is not None and file is can left as None
and the resultant file will have the `.ntwk` extension appended
to the filename.
Examples
--------
>>> n = rf.N(f=[1,2,3],s=[1,1,1],z0=50, name = 'open')
>>> n.write()
>>> n2 = rf.read('open.ntwk')
See Also
--------
skrf.io.general.write : write any skrf object
skrf.io.general.read : read any skrf object
"""
# this import is delayed until here because of a circular dependency
from .io.general import write
if file is None:
if self.name is None:
raise (ValueError('No filename given. You must provide a filename, or set the name attribute'))
file = self.name
write(file, self, *args, **kwargs)
def read(self, *args, **kwargs) -> None:
r"""
Read a Network from a 'ntwk' file.
A ntwk file is written with :func:`write`. It is just a pickled
file.
Parameters
----------
\*args, \*\*kwargs : args and kwargs
passed to :func:`skrf.io.general.read`
Note
----
This function calls :func:`skrf.io.general.read`.
Examples
--------
>>> rf.read('myfile.ntwk')
>>> rf.read('myfile.p')
See Also
--------
skrf.io.general.read
write
skrf.io.general.write
"""
from .io.general import read
self.copy_from(read(*args, **kwargs))
def write_spreadsheet(self, *args, **kwargs) -> None:
"""
Write contents of network to a spreadsheet, for your boss to use.
See Also
--------
skrf.io.general.network_2_spreadsheet
"""
from .io.general import network_2_spreadsheet
network_2_spreadsheet(self, *args, **kwargs)
def to_dataframe(self, attrs: list[str] =None,
ports: list[tuple[int, int]] = None, port_sep: str | None = None):
"""
Convert attributes of a Network to a pandas DataFrame.
Use the same parameters than :func:`skrf.io.general.network_2_dataframe`
Parameters
----------
attrs : list of string
Network attributes to convert, like ['s_db','s_deg']
ports : list of tuples
list of port pairs to write. defaults to ntwk.port_tuples
(like [[0,0]])
port_sep : string
defaults to None, which means a empty string "" is used for
networks with lower than 10 ports. (s_db 11, s_db 21)
For more than ten ports a "_" is used to avoid ambiguity.
(s_db 1_1, s_db 2_1)
For consistent behaviour it's recommended to specify "_" or
"," explicitly.
Returns
-------
df : `pandas.DataFrame`
See Also
---------
skrf.io.general.network_2_dataframe
"""
from .io.general import network_2_dataframe
if attrs is None:
attrs = ['s_db']
return network_2_dataframe(self, attrs=attrs, ports=ports, port_sep=port_sep)
def write_to_json_string(self) -> str:
"""
Serialize and convert network to a JSON string.
This is ~3x faster than writing to and reading back from touchstone
for a 4port 20,000 point device.
Returns
-------
jsonstr : string
JSON string
See Also
--------
skrf.io.general.to_json_string
"""
from .io.general import to_json_string
return to_json_string(self)
# interpolation
def interpolate(self, freq_or_n: Frequency | NumberLike, basis: str = 's',
coords: CoordT = 'cart', f_kwargs: dict = None, return_array: bool = False,
kind: InterpolKindT | None = None, **kwargs) -> Network | np.ndarray:
r"""
Interpolate a Network along frequency axis.
The input 'freq_or_n` can be either a new
:class:`~skrf.frequency.Frequency` or an `int`, or a new
frequency vector (in Hz).
This interpolates a given `basis`, ie s, z, y, etc, in the
coordinate system defined by `coord` like polar or cartesian.
Different interpolation types ('linear', 'quadratic') can be used
by passing appropriate `\*\*kwargs`. This function returns an
interpolated Network. Alternatively :func:`~Network.interpolate_self`
will interpolate self.
Parameters
----------
freq_or_n : :class:`~skrf.frequency.Frequency` or int or list-like
The new frequency over which to interpolate. this arg may be
one of the following:
* a new :class:`~skrf.frequency.Frequency` object
* an int: the current frequency span is resampled linearly.
* a list-like: create a new frequency using :meth:`~skrf.frequency.Frequency.from_f`
basis : ['s','z','y','a'], etc
The network parameter to interpolate
coords : string
Coordinate system to use for interpolation: 'cart' or 'polar':
'cart' is cartesian is Re/Im. 'polar' is unwrapped phase/mag
return_array: bool
return the interpolated array instead of re-assigning it to
a given attribute
**kwargs : keyword arguments
passed to interpolate method.
`freq_cropped` kwarg controls whether to use pre-cropped frequency
points for interpolation. Defaults to True.
passed to :func:`scipy.interpolate.interp1d` initializer.
`kind` controls interpolation type.
`kind` = `rational` uses interpolation by rational polynomials.
`d` kwarg controls the degree of rational polynomials
when `kind`=`rational`. Defaults to 4.
Returns
-------
result : :class:`Network`
an interpolated Network, or array
Note
----
Frequency cropping is only supported with methods from
`scipy.interpolate.interpolate.interp1d`. The 'rational' method does
not support frequency cropping.
The interpolation coordinate system (`coords`) makes a big
difference for large amounts of interpolation. polar works well
for duts with slowly changing magnitude. try them all.
See :func:`scipy.interpolate.interpolate.interp1d` for useful
kwargs. For example:
kind : string or int
Specifies the kind of interpolation as a string ('linear',
'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or
as an integer specifying the order of the spline
interpolator to use.
See Also
--------
resample
interpolate_self
interpolate_from_f
Examples
--------
.. ipython::
@suppress
In [21]: import skrf as rf
In [21]: n = rf.data.ring_slot
In [21]: n
In [21]: new_freq = rf.Frequency(75,110,501,'ghz')
In [21]: n.interpolate(new_freq, kind = 'cubic')
"""
# make new network and fill with interpolated values
if f_kwargs is None:
f_kwargs = {}
result = self.copy()
is_rational = False
freq_cropped = kwargs.pop('freq_cropped', True)
if kind == 'rational':
f_interp = mf.rational_interp
#Not supported by rational_interp
is_rational = True
else:
kwargs["kind"] = kind if kind is not None else "linear"
f_interp = interp1d
# interpret input
if isinstance(freq_or_n, Frequency):
# input is a frequency object
new_frequency = freq_or_n
else:
dim = len(shape(freq_or_n))
if dim == 0:
# input is a number
new_frequency = Frequency(start=self.frequency.start_scaled,
stop=self.frequency.stop_scaled,
unit=self.frequency.unit,
npoints=freq_or_n)
elif dim == 1:
# input is a array, or list
new_frequency = Frequency.from_f(freq_or_n, **f_kwargs)
# set new frequency and pull some variables
result.frequency = new_frequency
f = self.frequency.f
f_new = new_frequency.f
# Pre-cropped the frequency
l_idx = max(np.searchsorted(f, f_new[0], side="left") - 8, 0)
r_idx = min(np.searchsorted(f, f_new[-1], side="right") + 8, len(f))
# rational method or prohibit frequency clipping
if is_rational or not freq_cropped:
l_idx, r_idx = 0, len(f)
f_cropped = f[l_idx:r_idx]
# interpolate z0 ( this must happen first, because its needed
# to compute the basis transform below (like y2s), if basis!='s')
if np.all(self.z0 == self.z0[0]):
# If z0 is constant we don't need to interpolate it
z0_shape = list(self.z0.shape)
z0_shape[0] = len(f_new)
result._z0 = np.ones(z0_shape) * self.z0[0]
else:
result._z0 = f_interp(f_cropped, self.z0[l_idx:r_idx], axis=0, **kwargs)(f_new)
# interpolate parameter for a given basis
x: np.ndarray = getattr(self, basis)
x_cropped = x[l_idx:r_idx]
if coords == 'cart':
x_new = f_interp(f_cropped, x_cropped, axis=0, **kwargs)(f_new)
elif coords == 'polar':
rad = np.unwrap(np.angle(x_cropped), axis=0)
mag = np.abs(x_cropped)
interp_rad = f_interp(f_cropped, rad, axis=0, **kwargs)
interp_mag = f_interp(f_cropped, mag, axis=0, **kwargs)
x_new = interp_mag(f_new) * np.exp(1j * interp_rad(f_new))
else:
raise ValueError(f'Unknown coords {coords}')
# interpolate noise data too
if self.noisy:
f_noise = self.noise_freq.f
f_noise_new = new_frequency.f
noise_new = f_interp(f_noise, self.noise, axis=0, **kwargs)(f_noise_new)
if return_array:
return x_new
else:
result.__setattr__(basis, x_new)
if self.noisy:
result.noise = noise_new
result.noise_freq = new_frequency
return result
def interpolate_self(self, freq_or_n: Frequency | NumberLike, **kwargs) -> None:
"""
Interpolate the current Network along frequency axis (inplace).
The input 'freq_or_n` can be either a new
:class:`~skrf.frequency.Frequency` or an `int`, or a new
frequency vector (in Hz).
See :func:`~Network.interpolate` for more information.
Parameters
----------
freq_or_n : :class:`~skrf.frequency.Frequency` or int or list-like
The new frequency over which to interpolate. this arg may be
one of the following:
* a new :class:`~skrf.frequency.Frequency` object
* an int: the current frequency span is resampled linearly.
* a list-like: create a new frequency using :meth:`~skrf.frequency.Frequency.from_f`
**kwargs : keyword arguments
passed to :func:`scipy.interpolate.interp1d` initializer.
Returns
-------
None
The interpolation is performed inplace.
See Also
--------
resample
interpolate
interpolate_from_f
"""
ntwk = self.interpolate(freq_or_n, **kwargs)
self.frequency, self.s, self.z0 = ntwk.frequency, ntwk.s, ntwk.z0
if self.noisy:
self.noise, self.noise_freq = ntwk.noise, ntwk.noise_freq
##convenience
resample = interpolate_self
def extrapolate_to_dc(self, points: int = None, dc_sparam: NumberLike | None = None,
kind: InterpolKindT = 'cubic', coords: CoordT = 'cart',
**kwargs) -> Network:
"""
Extrapolate S-parameters down to 0 Hz and interpolate to uniform spacing.
If frequency vector needs to be interpolated aliasing will occur in
time-domain. For the best results first frequency point should be a
multiple of the frequency step so that points from DC to
the first measured point can be added without interpolating rest of the
frequency points.
Parameters
----------
points : int or None
Number of frequency points to be used in interpolation.
If None number of points is calculated based on the frequency step size
and spacing between 0 Hz and first measured frequency point.
dc_sparam : class:`np.ndarray` or None
NxN S-parameters matrix at 0 Hz.
If None S-parameters at 0 Hz are determined by linear extrapolation.
kind : str or int, default is 'cubic'
Specifies the kind of interpolation as a string ('linear',
'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or
as an integer specifying the order of the spline
interpolator to use for `scipy.interp1d`.
`kind` = 'rational' uses interpolation by rational polynomials.
`d` kwarg controls the degree of rational polynomials
when `kind` is 'rational'. Defaults to 4.
coords : str
Coordinate system to use for interpolation: 'cart' or 'polar'.
'cart' is cartesian is Re/Im, 'polar' is unwrapped phase/mag.
Passed to :func:`Network.interpolate`
Returns
-------
result : :class:`Network`
Extrapolated Network
See Also
--------
interpolate
impulse_response
step_response
"""
result = self.copy()
if self.frequency.f[0] == 0:
return result
if points is None:
fstep = self.frequency.f[1] - self.frequency.f[0]
points = len(self) + int(round(self.frequency.f[0]/fstep))
if dc_sparam is None:
#Interpolate DC point alone first using linear interpolation, because
#interp1d can't extrapolate with other methods.
#TODO: Option to enforce passivity
x = result.s[:2]
f = result.frequency.f[:2]
rad = np.unwrap(np.angle(x), axis=0)
mag = np.abs(x)
interp_rad = interp1d(f, rad, axis=0, fill_value='extrapolate')
interp_mag = interp1d(f, mag, axis=0, fill_value='extrapolate')
dc_sparam = interp_mag(0) * np.exp(1j * interp_rad(0))
# Extrapolate other points and insert
fstep = self.frequency.f[-1]/(points-1)
if self.frequency.f[0] >= 2*fstep:
len_interp = points - len(self)
extrapolated_f = Frequency(fstep, (len_interp-1) * fstep, len_interp-1, unit="Hz")
for freq in reversed(extrapolated_f.f):
interp_sparam = interp_mag(freq) * np.exp(1j * interp_rad(freq))
result.s = np.insert(result.s, 0, interp_sparam, axis=0)
result.frequency._f = np.insert(result.frequency.f, 0, freq)
result.z0 = np.insert(result.z0, 0, result.z0[0], axis=0)
else:
#Make numpy array if argument was list
dc_sparam = np.array(dc_sparam)
result.s = np.insert(result.s, 0, dc_sparam, axis=0)
result.frequency._f = np.insert(result.frequency.f, 0, 0)
result.z0 = np.insert(result.z0, 0, result.z0[0], axis=0)
if result.noisy:
result.noise = np.insert(result.noise, 0, 0, axis=0)
result.noise_freq._f = np.insert(result.noise_freq.f, 0, 0)
new_f = Frequency(0, result.frequency.f_scaled[-1], points,
unit=result.frequency.unit)
#None of the default interpolation methods are too good
#and cause aliasing in the time domain.
#Best results are obtained when no interpolation is needed,
#e.g. first frequency point is a multiple of frequency step.
result.interpolate_self(new_f, kind=kind, coords=coords, **kwargs)
#DC value must have zero imaginary part
result.s[0,:,:] = result.s[0,:,:].real
return result
def subnetwork(self, ports: Sequence[int], offby: int = 1) -> Network:
"""
Return a subnetwork of a the Network from a list of port numbers.
A subnetwork is Network which S-parameters corresponds to selected ports,
with all non-selected ports considered matched.
The resulting subNetwork is given a new Network.name property
from the initial name and adding the kept ports indices
(ex: 'device' -> 'device13'). Such name should make easier the use
of functions such as n_twoports_2_nport.
Parameters
----------
ports : list of int
List of ports to keep in the resultant Network.
Indices are the Python indices (starts at 0)
offby : int
starting value for s-parameters indexes in the sub-Network name parameter.
A value of `1`, assumes that a s21 = ntwk.s[:,1,0]. Default is 1.
Returns
-------
subntw : :class:`Network` object
Resulting subnetwork of the Network from the given ports
See also
--------
subnetwork, n_twoports_2_nport
"""
return subnetwork(self, ports, offby)
def crop(self, f_start: float, f_stop: float, unit: str = None) -> None:
"""
Crop Network based on start and stop frequencies.
No interpolation is done.
Parameters
----------
f_start : number
start frequency of crop range, in units of self.frequency.unit.
If `f_start` is lower than the lowest frequency, no change to the network is made by the lower bound.
f_stop : number
stop frequency of crop range, in units of self.frequency.unit
If `f_stop` is higher than the highest frequency, no change to the network is made by the higher bound.
unit : string
Units that `f_start` and `f_stop` are described in. This must be a string recognized by the Frequency
class, e.g. 'Hz','MHz', etc. A value of `None` assumes units are same as `self`
See Also
--------
cropped
"""
if f_start is None:
f_start = -np.inf
if f_stop is None:
f_stop = np.inf
if f_stop<f_start:
raise ValueError(f"`f_stop` was {f_stop}, which was smaller than `f_start`, which was {f_start}")
if unit is not None: # if `unit` is specified, we must retranslate the frequency units
# make a multiplier to put f_start and f_stop in the right units, e.g. 'GHz' -> 'MHz'
scaleFactor = Frequency.multiplier_dict[unit.lower()]/self.frequency.multiplier
f_start *=scaleFactor
f_stop *=scaleFactor
if f_start > self.frequency.f_scaled.max():
raise ValueError(f"`f_start` was {f_start}, which was larger than the largest frequency "
"in this Network object, which was {self.frequency.f_scaled.max()}")
if f_stop < self.frequency.f_scaled.min():
raise ValueError(f"`f_stop` was {f_stop}, which was smaller than the smallest frequency "
"in this Network object, which was {self.frequency.f_scaled.min()}")
start_idx,stop_idx = 0,self.frequency.npoints-1 # start with entire frequency range selected
if f_start > self.frequency.f_scaled.min():
start_idx = find_nearest_index(self.frequency.f_scaled, f_start)
# we do not want the start index to be at a frequency lower than `f_start`
if f_start > self.frequency.f_scaled[start_idx]:
start_idx += 1
if f_stop < self.frequency.f_scaled.max():
stop_idx = find_nearest_index(self.frequency.f_scaled, f_stop)
# we don't want the stop index to be at a frequency higher than `f_stop`
if f_stop < self.frequency.f_scaled[stop_idx]:
stop_idx -=1
if stop_idx < start_idx :
raise ValueError("Stop index/frequency lower than start: "
f"stop_idx: {stop_idx}, "
f"start_idx: {start_idx}, "
f"self.frequency.f[stop_idx]: {self.frequency.f[stop_idx]}, "
f"self.frequency.f[start_idx]: {self.frequency.f[start_idx]}")
ntwk = self[start_idx:stop_idx + 1]
self.frequency, self.s, self.z0 = ntwk.frequency, ntwk.s, ntwk.z0
def cropped(self, f_start: float, f_stop: float, unit: str = None) -> Network:
"""
Returns a cropped network, leaves self alone.
Parameters
----------
f_start : number
start frequency of crop range, in units of self.frequency.unit.
If `f_start` is lower than the lowest frequency, no change to the network is made by the lower bound.
f_stop : number
stop frequency of crop range, in units of self.frequency.unit
If `f_stop` is higher than the highest frequency, no change to the network is made by the higher bound.
unit : string
Units that `f_start` and `f_stop` are described in. This must be a string recognized by the Frequency
class, e.g. 'Hz','MHz', etc. A value of `None` assumes units are same as `self`
Returns
-------
ntwk : :class:`Network` object
Resulting cropped network
See Also
--------
crop
"""
out = self.copy()
out.crop(f_start=f_start, f_stop=f_stop,unit=unit)
return out
def flip(self) -> None:
"""
Swap the ports of a 2n-port Network (inplace).
In case the network is 2n-port and n > 1, 'second' numbering scheme is
assumed to be consistent with the ** cascade operator::
+--------+ +--------+
0-|0 n|-n 0-|n 0|-n
1-|1 n+1|-n+1 flip 1-|n+1 1|-n+1
... ... => ... ...
n-1-|n-1 2n-1|-2n-1 n-1-|2n-1 n-1|-2n-1
+--------+ +--------+
See Also
--------
flipped
renumber
renumbered
"""
if self.number_of_ports % 2 == 0:
n = int(self.number_of_ports / 2)
old = list(range(0, 2*n))
new = list(range(n, 2*n)) + list(range(0, n))
self.renumber(old, new)
else:
raise ValueError('you can only flip two-port Networks')
def flipped(self) -> Network:
"""
Returns a flipped network, leaves self alone.
Returns
-------
ntwk : :class:`Network` object
Resulting flipped Network
See Also
--------
flip
renumber
renumbered
"""
out = self.copy()
out.flip()
return out
def renormalize(self, z_new: NumberLike, s_def: SdefT | None = None) -> None:
"""
Renormalize s-parameter matrix given a new port impedances.
Parameters
----------
z_new : complex array of shape FxN, F, N or a scalar
new port impedances
s_def : str -> s_def : can be: None, 'power', 'pseudo' or 'traveling'
None to use the definition set in the network `s_def` attribute.
Scattering parameter definition : 'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
NB: results are the same for real-valued characteristic impedances.
See Also
--------
renormalize_s
fix_z0_shape
"""
# cast any array like type (tuple, list) to a np.array
z_new = np.array(z_new, dtype=complex)
# make sure the z_new shape can be compared with self.z0
z_new = fix_z0_shape(z_new, self.frequency.npoints, self.nports)
if s_def is None:
s_def = self.s_def
# Try to avoid renormalization if possible since it goes through
# Z-parameters which can cause numerical inaccuracies.
# We need to renormalize if z_new is different from z0
# or s_def is different and there is at least one complex port.
need_to_renorm = False
if np.any(self.z0 != z_new):
need_to_renorm = True
if s_def != self.s_def and (self.z0.imag != 0).any():
need_to_renorm = True
if need_to_renorm:
# We can use s2s if z0 is the same. This is numerically much more
# accurate.
if (self.z0 == z_new).all():
self.s = s2s(self.s, self.z0, s_def, self.s_def)
else:
self.s = renormalize_s(self.s, self.z0, z_new, s_def, self.s_def)
# Update s_def if it was changed
self.s_def = s_def
self.z0 = z_new
def renumber(self, from_ports: Sequence[int], to_ports: Sequence[int], only_z0: bool = False) -> None:
"""
Renumber ports of a Network (inplace).
Parameters
----------
from_ports : list-like
List of port indices to change. Size between 1 and N_ports.
to_ports : list-like
List of desired port indices. Size between 1 and N_ports.
only_z0 : bool
If true only z0 is renumbered, s-parameters are not affected.
This should only be used after executing the "connect_s" method
which keeps the port index where you expect it to be.
NB : from_ports and to_ports must have same size.
Returns
-------
None
The reorganization of the Network's port is performed inplace.
Examples
--------
In the following example, the ports of a 3-ports Network are
reorganized. Dummy reference impedances are set only to follow more
easily the renumbering.
>>> f = rf.Frequency(1, 1, 1, 'hz')
>>> s = np.arange(9).reshape(1, 3, 3)
>>> z0 = [10, 20, 30]
>>> ntw = rf.Network(frequency=f, s=s, z0=z0) # our OEM Network
In picture, we have::
Order in Original Order Scatter Parameters
skrf.Network 0 1 2
┌───────────────────┐ ┌──────────────────────┐
│ OEM │ │ │
│ │ │ │
0 ────────┤ A (10 Ω) │ ┤ 0.+0.j 1.+0.j 2.+0.j │
│ │ │ │
│ │ │ │
1 ────────┤ B (20 Ω) │ ┤ 3.+0.j 4.+0.j 5.+0.j │
│ │ │ │
│ │ │ │
2 ────────┤ C (30 Ω) │ ┤ 6.+0.j 7.+0.j 8.+0.j │
│ │ │ │
└───────────────────┘ └──────────────────────┘
While after renumbering
>>> ntw.renumber([0, 1, 2], [1, 2, 0])
we now have::
Order in Scatter Parameters
skrf.Network 0 1 2
┌───────────────────┐ ┌──────────────────────┐
│ OEM │ │ │
│ │ │ │
0 ────────┤ C (30 Ω) │ ┤ 8.+0.j 6.+0.j 7.+0.j │
│ │ │ │
│ │ │ │
1 ────────┤ A (10 Ω) │ ┤ 2.+0.j 0.+0.j 1.+0.j │
│ │ │ │
│ │ │ │
2 ────────┤ B (20 Ω) │ ┤ 5.+0.j 3.+0.j 4.+0.j │
│ │ │ │
└───────────────────┘ └──────────────────────┘
**Other examples:**
Reorganized only the reference impedance of the ports, while keeping
the order of the scattering parameters is also supported. This is
beneficial in some special cases.
>>> ntw.renumber([1, 2, 0], [0, 1, 2], only_z0=True)
we now have::
Order in Scatter Parameters
skrf.Network 0 1 2
┌───────────────────┐ ┌──────────────────────┐
│ OEM │ │ │
│ │ │ │
0 ────────┤ A (10 Ω) │ ┤ 8.+0.j 6.+0.j 7.+0.j │
│ │ │ │
│ │ │ │
1 ────────┤ B (20 Ω) │ ┤ 2.+0.j 0.+0.j 1.+0.j │
│ │ │ │
│ │ │ │
2 ────────┤ C (30 Ω) │ ┤ 5.+0.j 3.+0.j 4.+0.j │
│ │ │ │
└───────────────────┘ └──────────────────────┘
To flip the ports of a 2-port network 'foo':
>>> foo.renumber( [0,1], [1,0] )
To rotate the ports of a 3-port network 'bar' so that port 0 becomes port 1:
>>> bar.renumber( [0,1,2], [1,2,0] )
To swap the first and last ports of an N-port (N>=2) Network 'duck':
>>> duck.renumber( [0,-1], [-1,0] )
See Also
--------
renumbered
flip
flipped
"""
from_ports = np.array(from_ports)
to_ports = np.array(to_ports)
if len(np.unique(from_ports)) != len(from_ports):
raise ValueError('an index can appear at most once in from_ports or to_ports')
if any(np.unique(from_ports) != np.unique(to_ports)):
raise ValueError('from_ports and to_ports must have the same set of indices')
if not only_z0:
self.s[:, to_ports, :] = self.s[:, from_ports, :] # renumber rows
self.s[:, :, to_ports] = self.s[:, :, from_ports] # renumber columns
self.z0[:, to_ports] = self.z0[:, from_ports]
if self.port_names is not None:
_port_names = np.array(self.port_names)
_port_names[to_ports] = _port_names[from_ports]
self.port_names = _port_names.tolist()
def renumbered(self, from_ports: Sequence[int], to_ports: Sequence[int]) -> Network:
"""
Return a renumbered Network, leave self alone.
Parameters
----------
from_ports : list-like
List of port indices to change. Size between 1 and N_ports.
to_ports : list-like
List of desired port indices. Size between 1 and N_ports.
NB: from_ports and to_ports must have same size.
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
See Also
--------
renumber
flip
flipped
"""
out = self.copy()
out.renumber(from_ports, to_ports)
return out
def rotate(self, theta: NumberLike, unit: str = 'deg') -> None:
"""
Rotate S-parameters
"""
if unit == 'deg':
theta = mf.degree_2_radian(theta )
self.s = self.s * np.exp(-1j*theta)
def delay(self, d: float, unit: str = 'deg', port: int = 0, media: Any = None, **kw) -> Network:
"""
Add phase delay to a given port.
This will connect a transmission line of length `d/2` to the selected `port`. If no propagation properties are
specified for the line (`media=None`), then freespace is assumed to convert a distance `d` into an electrical
length. If a phase angle is specified for `d`, it will be evaluated at the center frequency of the network.
Parameters
----------
d : float
The angle/length/delay of the transmission line (see `unit` argument)
unit : ['deg','rad','m','cm','um','in','mil','s','us','ns','ps']
The units of d. See :func:`Media.to_meters`, for details
port : int
Port to add the delay to.
media: skrf.media.Media
Media object to use for generating the delay. If None, this will
default to freespace.
Returns
-------
ntwk : :class:`Network` object
A delayed copy of the `Network`.
"""
if d ==0:
return self
d=d/2.
if media is None:
from .media import Freespace
media = Freespace(frequency=self.frequency,
z0_override = self.z0[:,port])
l =media.line(d=d, unit=unit,**kw)
return connect(self, port, l, 0)
def windowed(self, window: str | float | tuple[str, float] | Callable =('kaiser', 6),
normalize: bool = True, center_to_dc: bool = None) -> Network:
"""
Return a windowed version of s-matrix. Used in time-domain analysis.
When using time domain through :attr:`s_time_db`,
or similar properties, the spectrum is usually windowed,
before the IFFT is taken. This is done to
compensate for the band-pass nature of a spectrum [#]_.
This function calls :func:`scipy.signal.get_window` which gives
more details about the windowing or a custom window function with
the required length as parameter.
Parameters
----------
window : string, float, tuple or callable
The type of window to create. See :func:`scipy.signal.get_window`
for details.
normalize : bool
Normalize the window to preserve power. ie
sum(ntwk.s,axis=0) == sum(ntwk.windowed().s,axis=0)
center_to_dc : bool or None
If True only the positive half of the window is applied to the signal.
This should be used if frequency vector begins from DC or from "close enough" to DC.
If False full window is used which also attenuates low frequencies.
If None then value is determined automatically based on if frequency
vector begins from 0.
Returns
-------
ntwk : :class:`Network` object
Resulting windowed Network
Examples
--------
>>> ntwk = rf.Network('myfile.s2p')
>>> ntwk_w = ntwk.windowed()
>>> ntwk_w.plot_s_time_db()
References
----------
.. [#] Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12
"""
if center_to_dc is None:
center_to_dc = self.frequency.f[0] == 0
if center_to_dc:
window = get_window(window, 2*len(self))[len(self):]
else:
window = get_window(window, len(self))
window = window.reshape(-1, 1, 1) * np.ones((len(self),
self.nports,
self.nports))
windowed = self * window
if normalize:
# normalize the s-parameters to account for power lost in windowing
windowed.s = windowed.s * np.sum(self.s_mag, axis=0) / \
np.sum(windowed.s_mag, axis=0)
return windowed
def time_gate(self, *args, **kw) -> Network:
"""
Time gate this Network.
Returns
-------
ntwk : :class:`Network` object
Resulting time-gated Network
see `skrf.time_domain.time_gate`
"""
return time_gate(self, *args, **kw)
# noise
def add_noise_polar(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Adds a complex zero-mean gaussian white-noise.
adds a complex zero-mean gaussian white-noise of a given
standard deviation for magnitude and phase
Parameters
----------
mag_dev : number
standard deviation of magnitude
phase_dev : number
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs(size=self.s.shape)
mag_rv = stats.norm(loc=0, scale=mag_dev).rvs(size=self.s.shape)
phase = (self.s_deg + phase_rv)
mag = self.s_mag + mag_rv
self.s = mag * np.exp(1j * np.pi / 180. * phase)
def add_noise_polar_flatband(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Add a flatband complex zero-mean gaussian white-noise signal of
given standard deviations for magnitude and phase.
Parameters
----------
mag_dev : number
standard deviation of magnitude
phase_dev : number
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs(size=self.s[0].shape)
mag_rv = stats.norm(loc=0, scale=mag_dev).rvs(size=self.s[0].shape)
phase = (self.s_deg + phase_rv)
mag = self.s_mag + mag_rv
self.s = mag * np.exp(1j * np.pi / 180. * phase)
def multiply_noise(self, mag_dev: float, phase_dev: float, **kwargs) -> None:
"""
Multiply a complex bivariate gaussian white-noise signal
of given standard deviations for magnitude and phase.
The mean of the magnitude is 1, and the mena of the phase is 0.
Parameters
----------
mag_dev: float
standard deviation of magnitude
phase_dev: float
standard deviation of phase [in degrees]
"""
phase_rv = stats.norm(loc=0, scale=phase_dev).rvs( \
size=self.s.shape)
mag_rv = stats.norm(loc=1, scale=mag_dev).rvs( \
size=self.s.shape)
self.s = mag_rv * np.exp(1j * np.pi / 180. * phase_rv) * self.s
def nudge(self, amount: float = 1e-12) -> Network:
"""
Perturb s-parameters by small amount.
This is useful to work-around numerical bugs.
Parameters
----------
amount : float
amount to add to s parameters
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
Note
----
This function is::
self.s = self.s + amount
"""
self.s = self.s + amount
# other
def func_on_parameter(self, func: Callable, attr: str = 's', *args, **kwargs) -> Network:
r"""
Apply a function parameter matrix, one frequency slice at a time.
This is useful for functions that can only operate on 2d arrays,
like numpy.linalg.inv. This loops over f and calls
`func(ntwkA.s[f,:,:], \*args, \*\*kwargs)`
Parameters
----------
func : func
function to apply to s-parameters, on a single-frequency slice.
(ie `func(ntwkA.s[0,:,:], \*args, \*\*kwargs)`
attr: string
Name of the parameter to operate on. Ex: 's', 'z', etc.
Default is 's'.
\*args, \*\*kwargs :
passed to the func
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
Examples
--------
>>> from numpy.linalg import inv
>>> ntwk.func_on_parameter(inv)
"""
ntwkB = self.copy()
p = getattr(self, attr)
ntwkB.s = np.r_[[func(p[k, :, :], *args, **kwargs) \
for k in range(len(p))]]
return ntwkB
def nonreciprocity(self, m: int, n: int, normalize: bool = False) -> Network:
r"""
Normalized non-reciprocity metric.
This is a port-by-port measure of how non-reciprocal an n-port
network is. It is defined by,
.. math::
(S_{mn} - S_{nm}) / \sqrt ( S_{mn} S_{nm} )
Parameters
----------
m : int
m index
n : int
n index
normalize : bool
Normalize the result. Default is False.
Returns
-------
ntwk : :class:`Network` object
Resulting renumbered Network
"""
forward = getattr(self, f"s{m}_{n}")
reverse = getattr(self, f"s{n}_{m}")
if normalize:
denom = forward * reverse
denom.s = np.sqrt(denom.s)
return (forward - reverse) / denom
else:
return (forward - reverse)
def s_error(self, ntwk: Network, error_function: ErrorFunctionsT = "average_l2_norm") -> np.ndarray:
"""
Compute the error between s-parameters of this network and another network `ntwk`.
See `skrf.s_error()`.
"""
return s_error(ntwkA=self, ntwkB=ntwk, error_function=error_function)
# generalized mixed mode transformations
def se2gmm(self, p: int, z0_mm: np.ndarray = None, s_def : str = None) -> None:
"""
Transform network from single ended parameters to generalized mixed mode parameters [#]_.
Parameters
----------
p : int
number of differential ports
z0_mm : Numpy array
`f x 2*p x 2*p` matrix of mixed mode impedances, optional.
If input is None, 2 * z0 Ohms differential and z0 / 2 Ohms common mode
reference impedance is used, where z0 is average of the differential
pair ports reference impedance.
Single-ended ports not converted to differential mode keep their z0.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition :
None to use the definition set in the network `s_def` attribute.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
All the definitions give the same result if z0 is real valued.
Note Odd Number of Ports
In the case where there are an odd number of ports (such as a 3-port network
with ports 0, 1, and 2), se2gmm() assumes that the last port (port 2) remains
single-ended and ports 0 and 1 are converted to differential mode and common
mode, respectively. For networks in which the port ordering is not suitable,
port renumbering can be used.
Examples
--------
For example, a 3-port single-ended network is converted to mixed-mode
parameters::
| Port 0 (single-ended, 50 ohms) --> Port 0 (single-ended, 50 ohms)
| Port 1 (single-ended, 50 ohms) --> Port 1 (differential mode, 100 ohms)
| Port 2 (single-ended, 50 ohms) --> Port 2 (common mode, 25 ohms)
>>> ntwk.renumber([0,1,2], [2,1,0])
>>> ntwk.se2gmm(p=1)
>>> ntwk.renumber([0,1,2], [1,2,0])
In the resulting network, port 0 is single-ended, port 1 is
differential mode, and port 2 is common mode.
In following examples, sx is single-mode port x, dy is
differential-mode port y, and cz is common-mode port z. The low
insertion loss path of a transmission line is symbolized by ==.
2-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
| | =se2gmm=> | |
1-|s1 | 1-|c0 |
+-----+ +-----+
3-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
1-|s1 | =se2gmm=> 1-|c0 |
2-|s2 | 2-|s2 |
+-----+ +-----+
Note: The port s2 remain in single-mode.
4-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
| | =se2gmm=> | |
1-|s1==s3|-3 2-|c0==c1|-3
+------+ +------+
5-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 =se2gmm=> 2-|c0==c1|-3
| s4|-4 | s4|-4
+------+ +------+
Note: The port s4 remain in single-mode.
8-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 2-|d2==d3|-3
| | =se2gmm=> | |
4-|s4==s6|-6 4-|c0==c1|-5
5-|s5==s7|-7 6-|c2==c3|-7
+------+ +------+
2N-Port diagram::
A B
+------------+ +-----------+
0-|s0========s2|-2 0-|d0=======d1|-1
1-|s1========s3|-3 2-|d2=======d3|-3
... ... =se2gmm=> ... ...
2N-4-|s2N-4==s2N-2|-2N-2 2N-4-|cN-4===cN-3|-2N-3
2N-3-|s2N-3==s2N-1|-2N-1 2N-2-|cN-2===cN-1|-2N-1
+------------+ +-----------+
Note: The network `A` is not cascadable with the `**` operator
along transmission path.
References
----------
.. [#] Ferrero and Pirola; Generalized Mixed-Mode S-Parameters; IEEE Transactions on
Microwave Theory and Techniques; Vol. 54; No. 1; Jan 2006
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
See Also
--------
gmm2se
"""
if 2*p > self.nports or p < 0:
raise ValueError('Invalid number of differential ports')
self.port_modes[:p] = "D"
self.port_modes[p:2 * p] = "C"
if s_def is None:
s_def = self.s_def
if s_def != self.s_def:
# Need to first renormalize to the new s_def if we have complex ports
self.renormalize(self.z0, s_def)
self.s_def = s_def
# Assumes 'proper' order (first differential ports, then single ended ports)
if z0_mm is None:
z0_mm = self.z0.copy()
z0_avg = 0.5*(z0_mm[:, 0:2*p:2] + z0_mm[:, 1:2*p:2])
z0_mm[:, 0:p] = 2*z0_avg # differential mode impedance
z0_mm[:, p:2 * p] = 0.5*z0_avg # common mode impedance
else:
# Make sure shape is correct
# Only set mixed mode ports
_z0_mm = self.z0.copy()
shape = [self.z0.shape[0], 2 * p]
z0_p = np.broadcast_to(z0_mm, shape)
_z0_mm[:,:2*p] = z0_p
z0_mm = _z0_mm
Xi_tilde_11, Xi_tilde_12, Xi_tilde_21, Xi_tilde_22 = self._Xi_tilde(p, self.z0, z0_mm, s_def)
A = Xi_tilde_21 + np.einsum('...ij,...jk->...ik', Xi_tilde_22, self.s)
B = Xi_tilde_11 + np.einsum('...ij,...jk->...ik', Xi_tilde_12, self.s)
self.s = mf.rsolve(B, A)
self.z0 = z0_mm
def gmm2se(self, p: int, z0_se: NumberLike = None, s_def : str = None) -> None:
"""
Transform network from generalized mixed mode parameters [#]_ to single ended parameters.
Parameters
----------
p : int
number of differential ports
z0_se: Numpy array
`f x 2*p x 2*p` matrix of single ended impedances, optional
if input is None, extract the reference impedance from the differential network
calculated as 0.5 * (0.5 * z0_diff + 2 * z0_comm) for each differential port.
Single-ended ports not converted to differential mode keep their z0.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition:
None to use the definition set in the network `s_def` attribute.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
All the definitions give the same result if z0 is real valued.
Examples
--------
In following examples, sx is single-mode port x, dy is
differential-mode port y, and cz is common-mode port z. The low
insertion loss path of a transmission line is symbolized by ==.
2-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
| | <=gmm2se= | |
1-|s1 | 1-|c0 |
+-----+ +-----+
3-Port diagram::
+-----+ +-----+
0-|s0 | 0-|d0 |
1-|s1 | <=gmm2se= 1-|c0 |
2-|s2 | 2-|s2 |
+-----+ +-----+
Note: The port s2 remain in single-mode.
4-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
| | <=gmm2se= | |
1-|s1==s3|-3 2-|c0==c1|-3
+------+ +------+
5-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 <=gmm2se= 2-|c0==c1|-3
| s4|-4 | s4|-4
+------+ +------+
Note: The port s4 remain in single-mode.
8-Port diagram::
+------+ +------+
0-|s0==s2|-2 0-|d0==d1|-1
1-|s1==s3|-3 2-|d2==d3|-3
| | <=gmm2se= | |
4-|s4==s6|-6 4-|c0==c1|-5
5-|s5==s7|-7 6-|c2==c3|-7
+------+ +------+
2N-Port diagram::
A B
+------------+ +-----------+
0-|s0========s2|-2 0-|d0=======d1|-1
1-|s1========s3|-3 2-|d2=======d3|-3
... ... <=gmm2se= ... ...
2N-4-|s2N-4==s2N-2|-2N-2 2N-4-|cN-4===cN-3|-2N-3
2N-3-|s2N-3==s2N-1|-2N-1 2N-2-|cN-2===cN-1|-2N-1
+------------+ +-----------+
Note: The network `A` is not cascadable with the `**` operator
along transmission path.
References
----------
.. [#] Ferrero and Pirola; Generalized Mixed-Mode S-Parameters; IEEE Transactions on
Microwave Theory and Techniques; Vol. 54; No. 1; Jan 2006
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
See Also
--------
se2gmm
"""
if 2*p > self.nports or p < 0:
raise ValueError('Invalid number of differential ports')
self.port_modes[:2*p] = "S"
if s_def is None:
s_def = self.s_def
if s_def != self.s_def:
# Need to first renormalize to the new s_def if we have complex ports
self.renormalize(self.z0, s_def)
self.s_def = s_def
# Assumes 'proper' order (differential ports, single ended ports)
if z0_se is None:
z0_se = self.z0.copy()
z0_avg = 0.5*(0.5*z0_se[:, 0:p] + 2*z0_se[:, p:2*p])
z0_se[:, 0:p] = z0_avg
z0_se[:, p:2 * p] = z0_avg
else:
# Make sure shape is correct
# Only set mixed mode ports
_z0_se = self.z0.copy()
shape = [self.z0.shape[0], 2 * p]
z0_p = np.broadcast_to(z0_se, shape)
_z0_se[:,:2*p] = z0_p
z0_se = _z0_se
Xi_tilde_11, Xi_tilde_12, Xi_tilde_21, Xi_tilde_22 = self._Xi_tilde(p, z0_se, self.z0, s_def)
A = Xi_tilde_22 - np.einsum('...ij,...jk->...ik', self.s, Xi_tilde_12)
# Note that B sign is incorrect in the paper. Inverted B here gives the
# correct result.
B = -Xi_tilde_21 + np.einsum('...ij,...jk->...ik', self.s, Xi_tilde_11)
self.s = np.linalg.solve(A, B) # (35)
self.z0 = z0_se
# generalized mixed mode supplement functions
_T = np.array([[1, 0, -1, 0], [0, 0.5, 0, -0.5], [0.5, 0, 0.5, 0], [0, 1, 0, 1]]) # (5)
def _m(self, z0: np.ndarray, s_def : str) -> np.ndarray:
if s_def == 'pseudo':
scaling = np.sqrt(z0.real) / (2 * np.abs(z0))
Z = np.ones((z0.shape[0], 2, 2), dtype=np.complex128)
Z[:, 0, 1] = z0
Z[:, 1, 1] = -z0
return scaling[:, np.newaxis, np.newaxis] * Z
elif s_def == 'power':
scaling = 1 / (2 * np.sqrt(z0.real))
Z = np.ones((z0.shape[0], 2, 2), dtype=np.complex128)
Z[:, 0, 1] = z0
Z[:, 1, 1] = -z0.conj()
return scaling[:, np.newaxis, np.newaxis] * Z
elif s_def == 'traveling':
Z = np.ones((z0.shape[0], 2, 2), dtype=np.complex128)
sqrtz0 = np.sqrt(z0)
Z[:, 0, 0] = 1 / sqrtz0
Z[:, 0, 1] = sqrtz0
Z[:, 1, 0] = 1 / sqrtz0
Z[:, 1, 1] = -sqrtz0
return 0.5 * Z
else:
raise ValueError('Unknown s_def')
def _M(self, j: int, k: int, z0_se: np.ndarray, s_def : str) -> np.ndarray: # (14)
M = np.zeros((self.f.shape[0], 4, 4), dtype=np.complex128)
M[:, :2, :2] = self._m(z0_se[:, j], s_def)
M[:, 2:, 2:] = self._m(z0_se[:, k], s_def)
return M
def _M_circle(self, l: int, p: int, z0_mm: np.ndarray, s_def : str) -> np.ndarray: # (12)
M = np.zeros((self.f.shape[0], 4, 4), dtype=np.complex128)
M[:, :2, :2] = self._m(z0_mm[:, l], s_def) # differential mode impedance of port pair
M[:, 2:, 2:] = self._m(z0_mm[:, p + l], s_def) # common mode impedance of port pair
return M
def _X(self,
j: int,
k: int ,
l: int,
p: int,
z0_se: np.ndarray,
z0_mm: np.ndarray,
s_def : str) -> np.ndarray: # (15)
# matrix multiplication elementwise for each frequency
return np.einsum('...ij,...jk->...ik',
self._M_circle(l, p, z0_mm, s_def).dot(self._T),
np.linalg.inv(self._M(j, k, z0_se, s_def)))
def _P(self, p: int) -> np.ndarray: # (27) (28)
n = self.nports
Pda = np.zeros((p, 2 * n), dtype=bool)
Pdb = np.zeros((p, 2 * n), dtype=bool)
Pca = np.zeros((p, 2 * n), dtype=bool)
Pcb = np.zeros((p, 2 * n), dtype=bool)
Pa = np.zeros((n - 2 * p, 2 * n), dtype=bool)
Pb = np.zeros((n - 2 * p, 2 * n), dtype=bool)
for l in np.arange(p):
Pda[l, 4 * (l + 1) - 3 - 1] = True
Pca[l, 4 * (l + 1) - 1 - 1] = True
Pdb[l, 4 * (l + 1) - 2 - 1] = True
Pcb[l, 4 * (l + 1) - 1] = True
for l in np.arange(n - 2 * p):
Pa[l, 4 * p + 2 * (l + 1) - 1 - 1] = True
Pb[l, 4 * p + 2 * (l + 1) - 1] = True
return np.concatenate((Pda, Pca, Pa, Pdb, Pcb, Pb))
def _Q(self) -> np.ndarray: # (29) error corrected
n = self.nports
Qa = np.zeros((n, 2 * n), dtype=bool)
Qb = np.zeros((n, 2 * n), dtype=bool)
for l in np.arange(n):
Qa[l, 2 * (l + 1) - 1 - 1] = True
Qb[l, 2 * (l + 1) - 1] = True
return np.concatenate((Qa, Qb))
def _Xi(self, p: int, z0_se: np.ndarray, z0_mm: np.ndarray, s_def : str) -> np.ndarray: # (24)
n = self.nports
Xi = np.ones(self.f.shape[0])[:, np.newaxis, np.newaxis] * np.eye(2 * n, dtype=np.complex128)
for l in np.arange(p):
Xi[:, 4 * l:4 * l + 4, 4 * l:4 * l + 4] = self._X(l * 2, l * 2 + 1, l, p, z0_se, z0_mm, s_def)
return Xi
def _Xi_tilde(
self, p: int, z0_se: np.ndarray, z0_mm: np.ndarray, s_def: SdefT
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: # (31)
n = self.nports
P = np.ones(self.f.shape[0])[:, np.newaxis, np.newaxis] * self._P(p)
QT = np.ones(self.f.shape[0])[:, np.newaxis, np.newaxis] * self._Q().T
Xi = self._Xi(p, z0_se, z0_mm, s_def)
Xi_tilde: np.ndarray = np.einsum("...ij,...jk->...ik", np.einsum("...ij,...jk->...ik", P, Xi), QT)
return Xi_tilde[:, :n, :n], Xi_tilde[:, :n, n:], Xi_tilde[:, n:, :n], Xi_tilde[:, n:, n:]
def impulse_response(
self,
window: str = "hamming",
n: int | None = None,
pad: int = 0,
bandpass: bool | None = None,
squeeze: bool = True,
) -> tuple[np.ndarray, np.ndarray]:
"""Calculate time-domain impulse response of one-port.
First frequency must be 0 Hz for the transformation to be accurate and
the frequency step must be uniform. Positions of the reflections are
accurate even if the frequency doesn't begin from 0, but shapes will
be distorted.
Real measurements should be extrapolated to DC and interpolated to
uniform frequency spacing.
Y-axis is the reflection coefficient.
Parameters
----------
window : string
FFT windowing function. (Default is 'hamming')
n : int
Length of impulse response output.
If n is not specified, 2m - 1 points are used in low-pass mode,
or m points in band-pass mode, where m = len(self) + pad. (default is None).
pad : int
Number of zeros to add as padding for FFT.
Adding more zeros improves accuracy of peaks. (Default is 0)
bandpass : bool or None
If False window function is center on 0 Hz.
If True full window is used and low frequencies are attenuated.
If None value is determined automatically based on if the
frequency vector begins from 0. (Default is None)
squeeze: bool
Squeeze impulse response to one dimension,
if a oneport gets transformed.
Has no effect when transforming a multiport.
(Default is True)
Returns
-------
t : class:`np.ndarray`
Time vector
y : class:`np.ndarray`
Impulse response
See Also
--------
step_response
extrapolate_to_dc
"""
if bandpass is None:
bandpass = self.f[0] != 0
t = self.frequency._t_padded(pad=pad, n=n, bandpass=bandpass)
n = len(t)
if window is not None:
w = self.windowed(window=window, normalize=False, center_to_dc=not bandpass)
else:
w = self
if bandpass:
ir = np.fft.fftshift(np.fft.ifft(w.s, axis=0, n=n), axes=0)
else:
ir = np.fft.fftshift(np.fft.irfft(w.s, axis=0, n=n), axes=0)
if squeeze:
ir = ir.squeeze()
return t, ir
def step_response(
self, window: str = "hamming", n: int | None = None, pad: int = 0, squeeze: bool = True
) -> tuple[np.ndarray, np.ndarray]:
"""Calculate time-domain step response of one-port.
First frequency must be 0 Hz for the transformation to be accurate and
the frequency step must be uniform.
Real measurements should be extrapolated to DC and interpolated to
uniform frequency spacing.
Y-axis is the reflection coefficient.
`step_resonse` is equal to the cumulative trapezoid integration of the
`impulse_response` function.
Parameters
----------
window : string
FFT windowing function. (Default is 'hamming')
n : int
Length of step response output.
If n is not specified, 2m - 1 points are used in low-pass mode
where m = len(self) + pad. (default is None).
pad : int
Number of zeros to add as padding for FFT.
Adding more zeros improves accuracy of peaks. (Default is 0)
squeeze: bool
Squeeze step response to one dimension,
if a oneport gets transformed.
Has no effect when transforming a multiport.
(Default is True)
Returns
-------
t : class:`np.ndarray`
Time vector
y : class:`np.ndarray`
Step response
Raises
------
ValueError
If used with an Network with more than one port
NotImplementedError
If used with non equidistant sampled frequency vector
See Also
--------
impulse_response
extrapolate_to_dc
"""
if self.frequency.sweep_type != 'lin':
raise NotImplementedError(
'Unable to transform non equidistant sampled points to time domain')
if self.frequency.f[0] != 0:
warnings.warn(
"Frequency doesn't begin from 0. Step response will not be correct.",
RuntimeWarning, stacklevel=2
)
t, y = self.impulse_response(window=window, n=n, pad=pad, bandpass=False, squeeze=squeeze)
return t, cumulative_trapezoid(y, initial=0, axis=0)
# Network Active s/z/y/vswr parameters
def s_active(self, a: np.ndarray) -> np.ndarray:
r"""
Returns the active s-parameters of the network for a defined wave excitation a.
The active s-parameter at a port is the reflection coefficients
when other ports are excited. It is an important quantity for active
phased array antennas.
Active s-parameters are defined by [#]_:
.. math::
\mathrm{active(s)}_{m} = \sum_{i=1}^N s_{mi}\frac{a_i}{a_m}
where :math:`s` are the scattering parameters and :math:`N` the number of ports
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude (pseudowave formulation [#]_)
Returns
-------
s_act : complex array of shape (n_freqs, n_ports)
active S-parameters for the excitation a
See Also
--------
z_active : active Z-parameters
y_active : active Y-parameters
vswr_active : active VSWR
References
----------
.. [#] D. M. Pozar, IEEE Trans. Antennas Propag. 42, 1176 (1994).
.. [#] D. Williams, IEEE Microw. Mag. 14, 38 (2013).
"""
return s2s_active(self.s, a)
def z_active(self, a: np.ndarray) -> np.ndarray:
r"""
Return the active Z-parameters of the network for a defined wave excitation a.
The active Z-parameters are defined by:
.. math::
\mathrm{active}(z)_{m} = z_{0,m} \frac{1 + \mathrm{active}(s)_m}{1 - \mathrm{active}(s)_m}
where :math:`z_{0,m}` is the characteristic impedance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
z_act : complex array of shape (nfreqs, nports)
active Z-parameters for the excitation a
See Also
--------
s_active : active S-parameters
y_active : active Y-parameters
vswr_active : active VSWR
"""
return s2z_active(self.s, self.z0, a)
def y_active(self, a: np.ndarray) -> np.ndarray:
r"""
Return the active Y-parameters of the network for a defined wave excitation a.
The active Y-parameters are defined by:
.. math::
\mathrm{active}(y)_{m} = y_{0,m} \frac{1 - \mathrm{active}(s)_m}{1 + \mathrm{active}(s)_m}
where :math:`y_{0,m}` is the characteristic admittance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
y_act : complex array of shape (nfreqs, nports)
active Y-parameters for the excitation a
See Also
--------
s_active : active S-parameters
z_active : active Z-parameters
vswr_active : active VSWR
"""
return s2y_active(self.s, self.z0, a)
def vswr_active(self, a: np.ndarray) -> np.ndarray:
r"""
Return the active VSWR of the network for a defined wave excitation a.
The active VSWR is defined by :
.. math::
\mathrm{active}(vswr)_{m} = \frac{1 + |\mathrm{active}(s)_m|}{1 - |\mathrm{active}(s)_m|}
where :math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
vswr_act : complex array of shape (nfreqs, nports)
active VSWR for the excitation a
See Also
--------
s_active : active S-parameters
z_active : active Z-parameters
y_active : active Y-parameters
"""
return s2vswr_active(self.s, a)
def stability_circle(self, target_port: int, npoints: int = 181) -> np.ndarray:
r"""
Returns loci of stability circles for a given port (0 or 1). The network must have two ports.
The center and radius of the load (here target_port=1) stability circle are calculated by the following equation
[#]_.
.. math::
C_{L} = \frac{(S_{22} - DS_{11}^*)^*}{|S_{22}|^{2} - |D|^{2}}
R_{L} = |\frac{S_{12}S_{21}}{|S_{22}|^2 - |D|^{2}}|
with
D = S_{11} S_{22} - S_{12} S_{21}
Similarly, those of the source side (here target_port=0) are calculated by the following equations.
.. math::
C_{S} = \frac{(S_{11} - DS_{22}^*)^*}{|S_{11}|^{2} - |D|^{2}}
R_{S} = |\frac{S_{12}S_{21}}{|S_{11}|^2 - |D|^{2}}|
Parameters
----------
target_port : int
Specifies the port number (0 or 1) to calculate stability circles.
npoints : int, optional
The number of points on the circumference of the circle.
More points result in a smoother circle, but require more computation. Default is 181.
Returns
-------
sc : :class:`numpy.ndarray` (shape is `npoints x f`)
Loci of stability circles in complex numbers
Example
--------
>>> import skrf as rf
>>> import matplotlib.pyplot as plt
Create a two-port network object
>>> ntwk = rf.Network('fet.s2p')
Calculate the load stability circles for all the frequencies
>>> lsc = ntwk.stability_circle(target_port=1)
Plot the circles on the smith chart
>>> rf.plotting.plot_smith(s=lsc, smith_r=5, marker='o')
>>> plt.show()
Slicing the network allows you to specify a frequency
>>> lsc = ntwk['1GHz'].stability_circle(target_port=1)
>>> rf.plotting.plot_smith(s=lsc, smith_r=5, marker='o')
>>> plt.show()
References
----------
.. [#] David. M. Pozar, "Microwave Engineering, Fourth Edition," Wiley, p. 566, 2011.
See Also
--------
gain_circle
nf_circle
stability
"""
if self.nports != 2:
raise ValueError("Stability circle is only defined for two ports")
if npoints <= 0:
raise ValueError("npoints must be a positive integer")
# Calculate the determinant of the scattering matrix
D = self.s[:, 0, 0] * self.s[:, 1, 1] - self.s[:, 0, 1] * self.s[:, 1, 0]
# Calculate the center and radius of the stability circle
if target_port == 1:
sc_center = ((self.s[:, 1, 1] - self.s[:, 0, 0].conjugate() * D).conjugate()
/ (np.abs(self.s[:, 1, 1]) ** 2 - np.abs(D) ** 2))
sc_radius = np.abs(self.s[:, 0, 1] * self.s[:, 1, 0]
/ (np.abs(self.s[:, 1, 1] ) ** 2 - np.abs(D) ** 2))
elif target_port == 0:
sc_center = ((self.s[:, 0, 0] - self.s[:, 1, 1].conjugate() * D).conjugate()
/ (np.abs(self.s[:, 0, 0]) ** 2 - np.abs(D) ** 2))
sc_radius = np.abs(self.s[:, 0, 1] * self.s[:, 1, 0]
/ (np.abs(self.s[:, 0, 0] ) ** 2 - np.abs(D) ** 2))
else:
raise ValueError("Invalid target_port. Specify 0 or 1.")
# Generate theta values for the points on the circle
theta = np.linspace(0, 2 * np.pi, npoints)
# Calculate real and imaginary parts of points on the load stability circle
sc_real = np.outer(sc_center.real, np.ones(npoints)) + np.outer(sc_radius, np.cos(theta))
sc_imag = np.outer(sc_center.imag, np.ones(npoints)) + np.outer(sc_radius, np.sin(theta))
# Combine real and imaginary parts to create the load stability circle
sc = (sc_real + 1j * sc_imag).T
return sc
def gain_circle(self, target_port: int, gain: float, npoints: int = 181) -> np.ndarray:
r"""
Returns loci of gain circles for a given port (0 or 1) and a specified gain. The network must have two ports.
The center and radius of the source (here target_port=0) gain circle are calculated by the following equations
[#]_ [#]_.
.. math::
C_{S} = \frac{g_{S}S_{11}^*}{1 - (1 - g_{S})|S_{11}|^{2}}
R_{S} = |\frac{\sqrt{(1 - g_{S})}(1 - |S_{11}|^{2})}{1 - (1 - g_{S})|S_{11}|^{2}}
where :math:`g_{S}` is obtained by normalizing the specified gain by the maximum gain of the source
matching network :math:`G_{Smax}`
.. math::
g_{S} = \frac{gain}{G_{Smax}} = gain * (1 - |S_{11}|^{2})
Similarly, those of the load side (here target_port=1) are calculated by the following equations.
.. math::
C_{L} = \frac{g_{L}S_{22}^*}{1 - (1 - g_{L})|S_{22}|^{2}}
R_{L} = |\frac{\sqrt{(1 - g_{L})}(1 - |S_{22}|^{2})}{1 - (1 - g_{L})|S_{22}|^{2}}
with
g_{L} = \frac{gain}{G_{Lmax}} = gain * (1 - |S_{22}|^{2})
Parameters
----------
target_port : int
Specifies the port number (0 or 1) to calculate gain circles.
gain : float
Gain of source or load matching network in decibels.
npoints : int, optional
The number of points on the circumference of the circle.
More points result in a smoother circle, but require more computation. Default is 181.
Returns
-------
gc : :class:`numpy.ndarray` (shape is `npoints x f`)
Loci of gain circles in complex numbers
Example
--------
>>> import skrf as rf
>>> import matplotlib.pyplot as plt
Create a two-port network object
>>> ntwk = rf.Network('fet.s2p')
Calculate the source gain circles for all the frequencies at a gain of 2 dB
>>> sgc = ntwk.gain_circle(target_port=0, gain=2.0)
Plot the circles on the smith chart
>>> rf.plotting.plot_smith(s=sgc, smith_r=1, marker='o')
>>> plt.show()
Slicing the network allows you to specify a frequency
>>> sgc = ntwk['1GHz'].gain_circle(target_port=0, gain=2.0)
>>> rf.plotting.plot_smith(s=sgc, smith_r=1, marker='o')
>>> plt.show()
References
----------
.. [#] David. M. Pozar, "Microwave Engineering, Fourth Edition," Wiley, p. 576, 2011.
.. [#] https://www.allaboutcircuits.com/technical-articles/designing-a-unilateral-rf-amplifier-for-a-specified-gain/
See Also
--------
stability_circle
nf_circle
max_gain : Maximum available and stable power gain
max_stable_gain : Maximum stable power gain
unilateral_gain : Mason's unilateral power gain
"""
if self.nports != 2:
raise ValueError("Gain circles are defined only for two-port networks")
if npoints <= 0:
raise ValueError("npoints must be a positive integer")
# Calculate the center and radius of the gain circle
if target_port == 0:
reflection = self.s[:, 0, 0]
elif target_port == 1:
reflection = self.s[:, 1, 1]
else:
raise ValueError("Invalid target_port. Specify 0 or 1.")
gain_factor = mf.db10_2_mag(gain) * (1 - np.abs(reflection) ** 2)
if np.any(gain_factor > 1):
warnings.warn("The specified gain is greater than the maximum gain achievable by the matching network. "
"Specify a smaller gain.", RuntimeWarning, stacklevel=2)
gain_factor = np.minimum(gain_factor, 1)
gc_center = gain_factor * reflection.conjugate() / (1 - (1 - gain_factor) * np.abs(reflection) ** 2)
gc_radius = (np.sqrt(1 - gain_factor) * (1 - np.abs(reflection) ** 2)
/ (1 - (1 - gain_factor) * np.abs(reflection) ** 2))
# Generate theta values for the points on the circle
theta = np.linspace(0, 2 * np.pi, npoints)
# Calculate real and imaginary parts of points on the gain circle
gc_real = np.outer(gc_center.real, np.ones(npoints)) + np.outer(gc_radius, np.cos(theta))
gc_imag = np.outer(gc_center.imag, np.ones(npoints)) + np.outer(gc_radius, np.sin(theta))
# Combine real and imaginary parts to create the load gain circle
gc = (gc_real + 1j * gc_imag).T
return gc
def nf_circle(self, nf: float, npoints: int = 181) -> np.ndarray:
r"""
Returns loci of noise figure circles for a specified noise figure. The network must have two ports and noise
data. The center and radius of the noise figure circle are calculated by the following equations [#]_.
.. math::
C_{F} = \frac{\Gamma_{opt}}{N + 1}
.. math::
R_{F} = \frac{\sqrt{N(N +1 - |\Gamma_{opt}|^2)}}{N + 1}
where :math:`N` is the noise figure parameter defined by
.. math::
N = \frac{|\Gamma_{s}-\Gamma_{opt}|^2}{1-|\Gamma_{s}|^2} = \frac{F-F_{min}}{4R_{N}/Z_{0}}|1+\Gamma_{opt}|^2
Parameters
----------
nf : float
Noise figure of network in decibels.
npoints : int, optional
The number of points on the circumference of the circle.
More points result in a smoother circle, but require more computation. Default is 181.
Returns
-------
nfc : :class:`numpy.ndarray` (shape is `npoints x f`)
Loci of noise figure circles in complex numbers
Example
--------
>>> import skrf as rf
>>> import matplotlib.pyplot as plt
Create a two-port network object
>>> ntwk = rf.Network('ntwk_noise.s2p')
Calculate the noise figure circles for all the frequencies at a noise figure of 1 dB
>>> nfc = ntwk.nf_circle(nf=1.0)
Plot the circles on the smith chart
>>> rf.plotting.plot_smith(s=nfc, smith_r=1, marker='o')
>>> plt.show()
Slicing the network allows you to specify a frequency
>>> nfc = ntwk['1GHz'].nf_circle(nf=1.0)
>>> rf.plotting.plot_smith(s=nfc, smith_r=1, marker='o')
>>> plt.show()
References
----------
.. [#] David. M. Pozar, "Microwave Engineering, Fourth Edition," Wiley, p. 580, 2011.
See Also
--------
stability_circle
gain_circle
g_opt: The optimum source reflection coefficient to minimize noise.
nfmin : The minimum noise figure of the network.
nfmin_db : The minimum noise figure for the network in dB.
rn : The equivalent noise resistance of the network.
"""
if self.nports != 2:
raise ValueError("Noise figure circles are defined only for two-port networks")
if npoints <= 0:
raise ValueError("npoints must be a positive integer")
if not self.noisy:
raise ValueError("Network must have noise data")
if nf < self.nfmin_db.any():
warnings.warn("The specified noise figure is less than the minimum achievable by the matching network. "
"Specify a larger noise figure.", RuntimeWarning, stacklevel=2)
# Compute noise figure circle center and radius
N = np.abs(1+self.g_opt)**2 * (10**(nf/10) - self.nfmin) / (4*self.rn / self.z0[0, 0])
nfc_center = self.g_opt / (N + 1)
nfc_radius = np.sqrt(N*(N + 1 - abs(self.g_opt) ** 2)) / (N + 1)
# Generate theta values for the points on the circle
theta = np.linspace(0, 2 * np.pi, npoints)
# Calculate real and imaginary parts of points on the noise figure circle
nfc_real = np.outer(nfc_center.real, np.ones(npoints)) + np.outer(nfc_radius, np.cos(theta))
nfc_imag = np.outer(nfc_center.imag, np.ones(npoints)) + np.outer(nfc_radius, np.sin(theta))
# Combine real and imaginary parts to create the noise figure circle
nfc = (nfc_real + 1j * nfc_imag).T
return nfc
_plot_attribute_doc = r"""
plot the Network attribute :attr:`{attribute}_{conversion}` component vs {x_axis}.
Parameters
----------
m : int, optional
first index of s-parameter matrix, if None will use all
n : int, optional
second index of the s-parameter matrix, if None will use all
ax : :class:`matplotlib.Axes` object, optional
An existing Axes object to plot on
show_legend : Boolean
draw legend or not
y_label : string, optional
the y-axis label
logx : Boolean, optional
Enable logarithmic x-axis, default off
\**kwargs : arguments, keyword arguments
passed to :func:`matplotlib.plot`
Note
----
This function is dynamically generated upon Network
initialization. This is accomplished by calling
:func:`Network.plot_attribute`
Examples
--------
>>> myntwk.plot_{attribute}_{conversion}(m=1,n=0,color='r')
"""
@axes_kwarg
def plot_attribute( self,
attribute: PrimaryPropertiesT,
conversion: ComponentFuncT,
m=None,
n=None,
ax: Axes=None,
show_legend=True,
y_label=None,
logx=False, **kwargs):
# create y_label if not provided
if y_label is None:
y_label = Network.Y_LABEL_DICT[conversion]
# create index lists, if not provided by user
if m is None:
M = range(self.number_of_ports)
else:
M = [m]
if n is None:
N = range(self.number_of_ports)
else:
N = [n]
if 'label' not in kwargs.keys():
gen_label = True
else:
gen_label = False
if conversion in ["time_impulse", "time_step"]:
xlabel = "Time (ns)"
t_func_kwargs = {"squeeze": False}
for key in {"window", "n", "pad", "bandpass"} & kwargs.keys():
t_func_kwargs[key] = kwargs.pop(key)
if conversion == "time_impulse":
x, y = self.impulse_response(**t_func_kwargs)
else:
x, y = self.step_response(**t_func_kwargs)
if attribute[0].lower() == "z":
y_label = "Z (Ohm)"
y[y == 1.] = 1. - 1e-12 # solve numerical singularity
y = self.z0[0].real * (1+y) / (1-y)
for m in M:
for n in N:
# set the legend label for this trace to the networks
# name if it exists, and they didn't pass a name key in
# the kwargs
if gen_label:
kwargs['label'] = rfplt._get_label_str(self, attribute[0].upper(), m, n)
if conversion in ["time_impulse", "time_step"]:
rfplt.plot_rectangular(x=x * 1e9,
y=y[:, m, n],
x_label=xlabel,
y_label=y_label,
show_legend=show_legend, ax=ax,
**kwargs)
else:
# plot the desired attribute vs frequency
if "time" in conversion:
xlabel = 'Time (ns)'
x = self.frequency.t_ns
y=self.attribute(attribute, conversion)[:, m, n]
if conversion in ["time_mag", "time"]:
y = np.abs(y)
else:
xlabel = f'Frequency ({self.frequency.unit})'
# x = self.frequency.f_scaled
x = self.frequency.f # always plot f, and then scale the ticks instead
y = self.attribute(attribute, conversion)[:, m, n]
# scale the ticklabels according to the frequency unit and set log-scale if desired:
if logx:
ax.set_xscale('log')
rfplt.scale_frequency_ticks(ax, self.frequency.unit)
rfplt.plot_rectangular(x=x,
y=y,
x_label=xlabel,
y_label=y_label,
show_legend=show_legend, ax=ax,
**kwargs)
plot_attribute.__doc__ = _plot_attribute_doc.format(
attribute="conversion",
conversion="attribute",
x_axis="frequency or time")
@copy_doc(rfplt.plot)
def plot(self, *args, **kwargs):
return rfplt.plot(self, *args, **kwargs)
@copy_doc(rfplt.plot_passivity)
def plot_passivity(self, port=None, label_prefix=None, *args, **kwargs):
return rfplt.plot_passivity(self, port, label_prefix, *args, **kwargs)
@copy_doc(rfplt.plot_reciprocity)
def plot_reciprocity(self, db=False, *args, **kwargs):
return rfplt.plot_reciprocity(self, db, *args, **kwargs)
@copy_doc(rfplt.plot_reciprocity2)
def plot_reciprocity2(self, db=False, *args, **kwargs):
return rfplt.plot_reciprocity2(self, db, *args, **kwargs)
@copy_doc(rfplt.plot_s_db_time)
def plot_s_db_time(self, center_to_dc=None, *args, **kwargs):
return rfplt.plot_s_db_time(self, *args, center_to_dc=center_to_dc, **kwargs)
@copy_doc(rfplt.plot_s_smith)
def plot_s_smith(self, m=None, n=None,r=1, ax=None, show_legend=True,\
chart_type='z', draw_labels=False, label_axes=False, draw_vswr=None, *args,**kwargs):
return rfplt.plot_s_smith(self, m, n, r, ax, show_legend, chart_type,
draw_labels, label_axes, draw_vswr, *args, **kwargs)
@copy_doc(rfplt.plot_it_all)
def plot_it_all(self, *args, **kwargs):
return rfplt.plot_it_all(self, *args, **kwargs)
@copy_doc(rfplt.plot_prop_complex)
def plot_prop_complex(self, *args, **kwargs):
return rfplt.plot_prop_complex(self, *args, **kwargs)
@copy_doc(rfplt.plot_prop_polar)
def plot_prop_polar(self, *args, **kwargs):
return rfplt.plot_prop_polar(self, *args, **kwargs)
def _fmt_trace_name(self, m: int, n: int) -> str:
port_sep = "_" if self.nports > 9 else ""
subscript = f"{self.port_modes[m].lower()}{self.port_modes[n].lower()}"
# do not add subscript for single-ended to single-ended
subscript = "" if subscript == "ss" else subscript
return f"{subscript}{m + 1}{port_sep}{n + 1}"
for func_name, (_func, prop_name, conversion) in Network._generated_functions().items():
func_name = f"{prop_name}_{conversion}"
doc = f"""
The {conversion} component of the {prop_name}-matrix.
See Also
--------
{prop_name}
"""
setattr(Network, func_name, property(
fget=lambda self,
prop_name=prop_name,
conversion=conversion:
self.attribute(prop_name, conversion), doc=doc))
for func_name, (_func, prop_name, conversion) in Network._generated_functions().items():
plotfunc = partial_with_docs(Network.plot_attribute, prop_name, conversion)
plotfunc.__doc__ = Network._plot_attribute_doc.format(
attribute=prop_name,
conversion=conversion,
x_axis="time" if "time" in conversion else "frequency")
setattr(Network, f"plot_{func_name}", plotfunc)
for prop_name in Network.PRIMARY_PROPERTIES:
setattr(Network, f"plot_{prop_name}_polar", partial_with_docs(Network.plot_prop_polar, prop_name))
setattr(Network, f"plot_{prop_name}_complex", partial_with_docs(Network.plot_prop_complex, prop_name))
COMPONENT_FUNC_DICT = Network.COMPONENT_FUNC_DICT
PRIMARY_PROPERTIES = Network.PRIMARY_PROPERTIES
Y_LABEL_DICT = Network.Y_LABEL_DICT
## Functions operating on Network[s]
def connect(ntwkA: Network, k: int, ntwkB: Network, l: int, num: int = 1) -> Network:
"""
Connect two n-port networks together.
Connect ports `k` thru `k+num-1` on `ntwkA` to ports
`l` thru `l+num-1` on `ntwkB`. The resultant network has
(ntwkA.nports+ntwkB.nports-2*num) ports. The port indices ('k','l')
start from 0. Port impedances **are** taken into account.
When the two networks have overlapping frequencies, the resulting
network will contain only the overlapping frequencies.
Note
----
The effect of mis-matched port impedances is handled by inserting
a 2-port 'mismatch' network between the two connected ports.
This mismatch Network is calculated with the
:func:`impedance_mismatch` function.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k : int
starting port index on `ntwkA` ( port indices start from 0 )
ntwkB : :class:`Network`
network 'B'
l : int
starting port index on `ntwkB`
num : int
number of consecutive ports to connect (default 1)
Returns
-------
ntwkC : :class:`Network`
new network of rank (ntwkA.nports + ntwkB.nports - 2*num)
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
innerconnect_s_lstsq : actual S-parameter connection algorithm using lstsq.
Examples
--------
To implement a *cascade* of two networks
>>> ntwkA = rf.Network('ntwkA.s2p')
>>> ntwkB = rf.Network('ntwkB.s2p')
>>> ntwkC = rf.connect(ntwkA, 1, ntwkB,0)
"""
# some checking
try:
check_frequency_equal(ntwkA, ntwkB)
except IndexError as e:
common_freq = np.intersect1d(ntwkA.frequency.f, ntwkB.frequency.f, return_indices=True)
if common_freq[0].size == 0:
raise e
else:
ntwkA = ntwkA[common_freq[1]]
ntwkB = ntwkB[common_freq[2]]
warnings.warn("Using a frequency subset:\n" + str(ntwkA.frequency), stacklevel=2)
if (k + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `k` out of range')
if (l + num - 1 > ntwkB.nports - 1):
raise IndexError('Port `l` out of range')
# create port_names if required
if ntwkB.port_names is None:
if ntwkA.port_names is not None:
ntwkB = ntwkB.copy()
ntwkB.port_names = [str(x) for x in range(ntwkB.nports)]
have_complex_ports = (ntwkA.z0.imag != 0).any() or (ntwkB.z0.imag != 0).any()
# If definitions aren't identical and there are complex ports renormalize first
# Output will have ntwkA s_def if they are different.
if ntwkA.s_def != ntwkB.s_def and have_complex_ports:
warnings.warn('Connecting two networks with different s_def and complex ports. '
'The resulting network will have s_def of the first network: ' + ntwkA.s_def + '. '\
'To silence this warning explicitly convert the networks to same s_def '
'using `renormalize` function.', stacklevel=2)
ntwkB = ntwkB.copy()
ntwkB.renormalize(ntwkB.z0, ntwkA.s_def)
s_def_original = ntwkA.s_def
if ntwkA.s_def == 'power' and have_complex_ports:
# When port impedance is complex, power-waves are discontinuous across
# a junction between two identical transmission lines while traveling
# waves and pseudo-waves are continuous. The connection algorithm relies
# on continuity and 'power' networks must be first converted to either
# of the other definition.
ntwkA = ntwkA.copy()
ntwkA.renormalize(ntwkA.z0, 'pseudo')
ntwkB = ntwkB.copy()
ntwkB.renormalize(ntwkB.z0, 'pseudo')
s_def = ntwkA.s_def
if s_def == 'power':
# Ports are real. Save some time by not copying the networks
# and use the definition that works with real ports
s_def = 'traveling'
# create output Network, from copy of input
# Since ntwkC's s-parameters will change later, use shallow_copy for speedup
ntwkC = ntwkA.copy(shallow_copy=True)
# if networks' z0's are not identical, then connect a impedance
# mismatch, which takes into account the effect of differing port
# impedances.
# import pdb;pdb.set_trace()
z0_equal = assert_z0_at_ports_equal(ntwkA, k, ntwkB, l)
if not z0_equal:
# connect a impedance mismatch, which will takes into account the
# effect of differing port impedances
mismatch = impedance_mismatch(ntwkA.z0[:, k], ntwkB.z0[:, l], s_def)
ntwkC.s = connect_s(ntwkA.s, k, mismatch, 0, num=-1)
# the connect_s() put the mismatch's output port at the end of
# ntwkC's ports. Fix the new port's impedance, then insert it
# at position k where it belongs.
ntwkC.z0[:, k:] = np.hstack((ntwkC.z0[:, k + 1:], ntwkB.z0[:, [l]]))
ntwkC.renumber(from_ports=[ntwkC.nports - 1] + list(range(k, ntwkC.nports - 1)),
to_ports=list(range(k, ntwkC.nports)))
# call s-matrix connection function
ntwkC.s = connect_s(ntwkC.s if not z0_equal else ntwkA.s, k, ntwkB.s, l, num)
# combine z0 and port_names arrays and remove ports which were `connected`
ntwkC.z0 = np.hstack(
(np.delete(ntwkA.z0, range(k, k + 1), 1), np.delete(ntwkB.z0, range(l, l + 1), 1)))
if ntwkA.port_names is not None:
ntwkC.port_names = np.concatenate(
(np.delete(ntwkA.port_names, k), np.delete(ntwkB.port_names, l)))
# if we're connecting more than one port, call innerconnect recursively
# until all connections are made to finish the job
if num > 1:
ntwkC = innerconnect(ntwkC, k, ntwkA.nports - 1 + l, num - 1)
# if ntwkB is a 2port, then keep port indices where you expect.
if ntwkB.nports == 2 and ntwkA.nports >= 2 and num == 1:
from_ports = list(range(ntwkC.nports))
to_ports = list(range(ntwkC.nports))
to_ports.pop(k)
to_ports.append(k)
ntwkC.renumber(from_ports=from_ports,
to_ports=to_ports,
only_z0=True)
# Clear the ntwkC's ext_attrs, since they may have been inherited from ntwkA
# If a open, ground or port terminal is connected, this property should not be inherited
ntwkC._ext_attrs = {}
# if ntwkA and ntwkB are both 2port, and either one has noise, calculate ntwkC's noise
either_are_noisy = False
either_are_noisy = ntwkA.noisy or ntwkB.noisy
if num == 1 and ntwkA.nports == 2 and ntwkB.nports == 2 and either_are_noisy:
if ntwkA.noise_freq is not None and ntwkB.noise_freq is not None and ntwkA.noise_freq != ntwkB.noise_freq:
raise IndexError('Networks must have same noise frequency. See `Network.interpolate`')
cA = ntwkA.noise
cB = ntwkB.noise
noise_freq = ntwkA.noise_freq
if noise_freq is None:
noise_freq = ntwkB.noise_freq
if cA is None:
cA = np.broadcast_arrays(np.array([[0., 0.], [0., 0.]]), ntwkB.noise)[0]
if cB is None:
cB = np.broadcast_arrays(np.array([[0., 0.], [0., 0.]]), ntwkA.noise)[0]
if k == 0:
# if we're connecting to the "input" port of ntwkA, recalculate the equivalent noise of ntwkA,
# since we're modeling the noise as a pair of sources at the "input" port
# TODO
raise (NotImplementedError)
if l == 1:
# if we're connecting to the "output" port of ntwkB, recalculate the equivalent noise,
# since we're modeling the noise as a pair of sources at the "input" port
# TODO
raise (NotImplementedError)
# interpolate abcd into the set of noise frequencies
if ntwkA.deembed:
if ntwkA.frequency.f.size > 1:
a_real = interp1d(
ntwkA.frequency.f,
ntwkA.inv.a.real,
axis=0,
bounds_error=False,
kind=ntwkA.noise_interp_kind
)
a_imag = interp1d(
ntwkA.frequency.f,
ntwkA.inv.a.imag,
axis=0,
bounds_error=False,
kind=ntwkA.noise_interp_kind
)
a = a_real(noise_freq.f) + 1.j * a_imag(noise_freq.f)
else:
a_real = ntwkA.inv.a.real
a_imag = ntwkA.inv.a.imag
a = a_real + 1.j * a_imag
a = npy_inv(a)
a_H = np.conj(a.transpose(0, 2, 1))
cC = np.matmul(a, np.matmul(cB -cA, a_H))
else:
if ntwkA.frequency.f.size > 1:
a_real = interp1d(
ntwkA.frequency.f,
ntwkA.a.real,
axis=0,
bounds_error=False,
kind=ntwkA.noise_interp_kind
)
a_imag = interp1d(
ntwkA.frequency.f,
ntwkA.a.imag,
axis=0,
bounds_error=False,
kind=ntwkA.noise_interp_kind
)
a = a_real(noise_freq.f) + 1.j * a_imag(noise_freq.f)
else :
a_real = ntwkA.a.real
a_imag = ntwkA.a.imag
a = a_real + 1.j * a_imag
a_H = np.conj(a.transpose(0, 2, 1))
cC = np.matmul(a, np.matmul(cB, a_H)) + cA
ntwkC.noise = cC
ntwkC.noise_freq = noise_freq
if ntwkC.s_def != s_def_original:
ntwkC.renormalize(ntwkC.z0, s_def_original)
return ntwkC
def connect_fast(ntwkA: Network, k: int, ntwkB: Network, l: int) -> Network:
"""
Alias for connect.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k : int
starting port index on `ntwkA` ( port indices start from 0 )
ntwkB : :class:`Network`
network 'B'
l : int
starting port index on `ntwkB`
Returns
-------
ntwkC : :class:`Network`
new network of rank `(ntwkA.nports + ntwkB.nports - 2)`
"""
warnings.warn("connect_fast is deprecated. Use connect.", DeprecationWarning, stacklevel=2)
return connect(ntwkA, k, ntwkB, l)
def parallelconnect(ntwks: Sequence[Network] | Network,
ports: Sequence[int | Sequence[int]],
name: str | None = None) -> Network:
"""
Connects a series of multi-port networks in parallel, ensuring that the specified port
indices share the concatenated intersection.
Parameters
----------
ntwks : :Sequence[`Network`] | `Network`
A sequence of multi-port networks or a single network to be connected in parallel.
ports : Sequence[int | Sequence[int]]
A sequence of port indices, where each entry can be an int or a sequence of ints
corresponding to the ports of the respective network. The length of `ports` should
match the length of `networks`. Each specified port index is connect to the
concatenated intersection, implying they are electrically common.
name : str, optional
define the connected network's name. Default is None.
Returns
-------
connected_network : :class:`Network`
A new network created from the parallel connection of the input networks.
The number of ports in the resulting network equals the sum of ports in `ntwks`,
minus the number of ports specified in `ports` that were connected in parallel.
The remaining ports follow the original port order of the input networks, after
removing those involved in the parallel connection.
Note
----
This function calculates the resulting scattering parameters after parallel connecting
a set of networks. This algorithm [#]_, adapted from the `Circuit.s` method, constructs the
concatenated intersection matrix [X] and the global scattering matrix [C] to perform
the calculations.
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
innerconnect_s_lstsq : actual S-parameter connection algorithm using lstsq.
Examples
--------
The following examples demonstrate how to use the :func:`parallelconnect` in
different ways, such as open a port, connect two networks, innerconnect one
network, and parallel multiple networks.
>>> # Prepare the example Networks
>>> ntwkA = rf.Network('ntwkA.s2p')
>>> ntwkB = rf.Network('ntwkB.s2p')
>>> ntwkC = rf.connect('ntwkC.s4p')
>>>
>>> # 1) Open port 1 of ntwkA
>>> # +-----+
>>> # [0] A [1]--Open
>>> # +-----+
>>> #
>>> rf.parallelconnect(ntwkA, [1])
>>>
>>>
>>> # 2) Connect ntwkA's port 1 to ntwkB's port 0
>>> # +-----+ +-----+
>>> # [0] A [1]---[0] B [1]
>>> # +-----+ +-----+
>>> #
>>> rf.parallelconnect([ntwkA, ntwkB], [1, 0])
>>>
>>>
>>> # 3) Innerconnect the ntwkC's port 1 and 3
>>> # +-----+
>>> # | [1]--+
>>> # [0] C [2] |
>>> # | [3]--+
>>> # +-----+
>>> #
>>> rf.parallelconnect(ntwkC, [[2, 3]])
>>>
>>>
>>> # 4) Parallel connect the ntwkA's port 1, ntwkB's port 1 and ntwkC's port 0
>>> # +-----+
>>> # [0] A [1]---+ +-----+
>>> # +-----+ | | [1]
>>> # |---[0] C [2]
>>> # +-----+ | | [3]
>>> # [0] B [1]---+ +-----+
>>> # +-----+
>>> #
>>> rf.parallelconnect([ntwkA, ntwkB, ntwkC], [1, 1, 0])
>>>
>>>
>>> # 5) The port order of connected ntwk follows the order of ntwks and ports
>>> # as shown in example 4:
>>> # +-----+
>>> # [0] A [1]---+ +-----+ +---------------+
>>> # +-----+ | | [1] [0]=A[0] C[3]=[3]
>>> # |---[0] C [2] ===> [1]=B[0] |
>>> # +-----+ | | [3] [2]=C[1] C[3]=[4]
>>> # [0] B [1]---+ +-----+ +---------------+
>>> # +-----+
References
----------
.. [#] P. Hallbjörner, Microw. Opt. Technol. Lett. 38, 99 (2003).
"""
# Handle single network input
if isinstance(ntwks, Network):
ntwks = [ntwks]
if len(ntwks) != len(ports):
raise ValueError(f'ntwks and ports must have the same length ({len(ntwks)} != {len(ports)})')
# Ensure unique networks
if len(set(ntw.name for ntw in ntwks)) != len(ntwks):
raise ValueError('ntwks should not be duplicated.')
# Get the index of each network in the list
dim, off = sum(ntw.nports for ntw in ntwks), 0
inter_indices, exter_indices = [], []
z0_in, z0_ext = [], []
# Assign the global scattering matrix [X] and concatenated intersection matrix [C]
X = np.zeros((ntwks[0].frequency.npoints, dim, dim), dtype='complex')
C = np.zeros((ntwks[0].frequency.npoints, dim, dim), dtype='complex')
for ntw, port in zip(ntwks, ports):
# Get the nports of Network
nports: int = ntw.nports
# Convert the int port to list
port = [port] if isinstance(port, int) else port
# Che the port indices valid or not
if len(port) != len(set(port)):
raise ValueError(f"{ntw.name}'s port should not be duplicated.")
if max(port) >= nports or min(port) < 0:
raise ValueError(f"{ntw.name}'s port index should be between 0 and {nports-1}")
# Check the frequency equal or not
check_frequency_equal(ntw, ntwks[0])
# Append the port index with offset to indices list
for p in range(nports):
if p in port:
inter_indices.append(p + off)
z0_in.append(ntw.z0[:, p])
else:
exter_indices.append(p + off)
z0_ext.append(ntw.z0[:, p])
# Assign the scattering matrix of each network to the global scattering matrix
X[:, off:off+nports, off:off+nports] = ntw.s_traveling
# Update the offset
off += nports
# Compute interaction matrix for internal connections
z0s = np.array(z0_in).T
y0s = 1./z0s
y_tot = y0s.sum(axis=1)
s = 2 *np.sqrt(np.einsum('ki,kj->kij', y0s, y0s)) / y_tot[:, None, None]
np.einsum('kii->ki', s)[:] -= 1 # Sii
# Get the index of internal port and external port from global matrix
in_ind = np.meshgrid(inter_indices, inter_indices, indexing='ij')
out_ind = np.meshgrid(exter_indices, exter_indices, indexing='ij')
# Update the concatenated intersection matrix
C[:, in_ind[0], in_ind[1]] = s
# Get the global scattering matrix
s = X @ np.linalg.inv(np.identity(dim) - C @ X)
return Network(frequency = ntwks[0].frequency,
s = s[:, out_ind[0], out_ind[1]],
z0 = np.array(z0_ext).T,
name = name)
def innerconnect(ntwkA: Network, k: int, l: int, num: int = 1) -> Network:
"""
Connect ports of a single n-port network.
this results in a (n-2)-port network. remember port indices start
from 0.
Note
----
A 2-port 'mismatch' network is inserted between the connected ports
if their impedances are not equal.
Parameters
----------
ntwkA : :class:`Network`
network 'A'
k,l : int
starting port indices on ntwkA ( port indices start from 0 )
num : int
number of consecutive ports to connect
Returns
-------
ntwkC : :class:`Network`
new network of rank (ntwkA.nports - 2*num)
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
innerconnect_s_lstsq : actual S-parameter connection algorithm using lstsq.
Examples
--------
To connect ports '0' and port '1' on ntwkA
>>> ntwkA = rf.Network('ntwkA.s3p')
>>> ntwkC = rf.innerconnect(ntwkA, 0,1)
"""
if (k + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `k` out of range')
if (l + num - 1 > ntwkA.nports - 1):
raise IndexError('Port `l` out of range')
# 'power' is not supported, convert to supported definition and back afterwards
if ntwkA.s_def == 'power':
ntwkA = ntwkA.copy()
ntwkA.renormalize(ntwkA.z0, 'pseudo')
# create output Network, from copy of input
# Since ntwkC's s-parameters will change later, use shallow_copy for speedup
ntwkC = ntwkA.copy(shallow_copy=True)
s_def_original = ntwkC.s_def
z0_equal = (ntwkC.z0[:, k] == ntwkC.z0[:, l]).all()
if not z0_equal:
if ntwkC.port_names is not None:
port_names = ntwkC.port_names.copy()
# connect a impedance mismatch, which will takes into account the
# effect of differing port impedances
mismatch = impedance_mismatch(ntwkA.z0[:, k], ntwkA.z0[:, l], ntwkA.s_def)
ntwkC.s = connect_s(ntwkA.s, k, mismatch, 0, num=-1)
# the connect_s() put the mismatch's output port at the end of
# ntwkC's ports. Fix the new port's impedance, then insert it
# at position k where it belongs.
ntwkC.z0[:, k:] = np.hstack((ntwkC.z0[:, k + 1:], ntwkC.z0[:, [l]]))
ntwkC.renumber(from_ports=[ntwkC.nports - 1] + list(range(k, ntwkC.nports - 1)),
to_ports=list(range(k, ntwkC.nports)))
if ntwkC.port_names is not None:
ntwkC.port_names = port_names
# call s-matrix connection function
ntwkC.s = innerconnect_s(ntwkC.s if not z0_equal else ntwkA.s, k, l)
# update the characteristic impedance matrix and port_names
ntwkC.z0 = np.delete(ntwkC.z0, list(range(k, k + 1)) + list(range(l, l + 1)), 1)
if ntwkC.port_names is not None:
ntwkC.port_names = np.delete(ntwkC.port_names, [k] + [l]).tolist()
# recur if we're connecting more than one port
if num > 1:
ntwkC = innerconnect(ntwkC, k, l - 1, num - 1)
if ntwkC.s_def != s_def_original:
ntwkC.renormalize(ntwkC.z0, s_def_original)
return ntwkC
def cascade(ntwkA: Network, ntwkB: Network) -> Network:
"""
Cascade two 2, 2N-ports Networks together.
Connects ports N through 2N-1 on `ntwkA` to ports 0 through N of
`ntwkB`. This calls `connect()`, which is a more general function.
Use `Network.renumber` to change port order if needed.
Note
----
connection diagram::
A B
+---------+ +---------+
-|0 N |---|0 N |-
-|1 N+1|---|1 N+1|-
... ... ... ...
-|N-2 2N-2|---|N-2 2N-2|-
-|N-1 2N-1|---|N-1 2N-1|-
+---------+ +---------+
Parameters
----------
ntwkA : :class:`Network`
network `ntwkA`
ntwkB : :class:`Network`
network `ntwkB`
Returns
-------
C : :class:`Network`
the resultant network of ntwkA cascaded with ntwkB
See Also
--------
connect : connects two Networks together at arbitrary ports.
Network.renumber : changes the port order of a network
"""
if ntwkA.nports<2:
raise ValueError('nports must be >1')
N = int(ntwkA.nports/2 )
if ntwkB.nports == 1:
# we are terminating an N-port with a 1-port.
# which port on self to use is ambiguous. choose N
return connect(ntwkA, N, ntwkB, 0)
elif ntwkA.nports % 2 == 0 and ntwkA.nports == ntwkB.nports:
# we have two 2N-port balanced networks
return connect(ntwkA, N, ntwkB, 0, num=N)
elif ntwkA.nports % 2 == 0 and ntwkA.nports == 2 * ntwkB.nports:
# we have a 2N-port balanced network terminated by an N-port network
return connect(ntwkA, N, ntwkB, 0, num=N)
else:
raise ValueError('I dont know what to do, check port shapes of Networks')
def cascade_list(l: Sequence[Network]) -> Network:
"""
Cascade a list of 2N-port networks.
all networks must have same frequency
Parameters
----------
l : list-like
(ordered) list of networks
Returns
-------
out : 2-port Network
the results of cascading all networks in the list `l`
"""
return reduce(cascade, l)
def de_embed(ntwkA: Network, ntwkB: Network) -> Network:
"""
De-embed `ntwkA` from `ntwkB`.
This calls `ntwkA.inv ** ntwkB`. The syntax of cascading an inverse
is more explicit, it is recommended that it be used instead of this
function.
Parameters
----------
ntwkA : :class:`Network`
network `ntwkA`
ntwkB : :class:`Network`
network `ntwkB`
Returns
-------
C : Network
the resultant network of ntwkB de-embedded from ntwkA
See Also
--------
connect : connects two Networks together at arbitrary ports.
"""
return ntwkA.inv ** ntwkB
def stitch(ntwkA: Network, ntwkB: Network, **kwargs) -> Network:
r"""
Stitch ntwkA and ntwkB together.
Concatenates two networks' data. Given two networks that cover
different frequency bands this can be used to combine their data
into a single network.
Parameters
----------
ntwkA, ntwkB : :class:`Network` objects
Networks to stitch together
\*\*kwargs : keyword args
passed to :class:`Network` constructor, for output network
Returns
-------
ntwkC : :class:`Network`
result of stitching the networks `ntwkA` and `ntwkB` together
Examples
--------
>>> from skrf.data import wr2p2_line, wr1p5_line
>>> rf.stitch(wr2p2_line, wr1p5_line)
2-Port Network: 'wr2p2,line', 330-750 GHz, 402 pts, z0=[ 50.+0.j 50.+0.j]
"""
A, B = ntwkA, ntwkB
C = Network(
frequency=Frequency.from_f(np.r_[A.f[:], B.f[:]], unit='hz'),
s=np.r_[A.s, B.s],
z0=np.r_[A.z0, B.z0],
name=A.name,
**kwargs
)
C.frequency.unit = A.frequency.unit
return C
def overlap(ntwkA: Network, ntwkB: Network) -> tuple[Network, Network]:
"""
Return the overlapping parts of two Networks, interpolating if needed.
If frequency vectors for each ntwk don't perfectly overlap, then
ntwkB is interpolated so that the resultant networks have identical
frequencies.
Parameters
----------
ntwkA : :class:`Network`
a ntwk which overlaps `ntwkB`. (the `dominant` network)
ntwkB : :class:`Network`
a ntwk which overlaps `ntwkA`.
Returns
-------
ntwkA_new : :class:`Network`
part of `ntwkA` that overlapped `ntwkB`
ntwkB_new : :class:`Network`
part of `ntwkB` that overlapped `ntwkA`, possibly interpolated
See Also
--------
:func:`skrf.frequency.overlap_freq`
:func:`skrf.network.overlap_multi`
"""
new_freq = ntwkA.frequency.overlap(ntwkB.frequency)
return ntwkA.interpolate(new_freq), ntwkB.interpolate(new_freq)
def overlap_multi(ntwk_list: Sequence[Network]):
"""
Return the overlapping parts of multiple Networks, interpolating if needed.
If frequency vectors for each ntwk don't perfectly overlap, then
all networks after the first are interpolated so that the resultant networks
have identical frequencies.
Parameters
----------
ntwk_list : list of skrf.Networks
a list of networks with some overlap
Returns
-------
overlap_list : list of skrf.Networks
a list of networks that mutually overlap
See Also
--------
:func:`skrf.frequency.overlap_freq`
:func:`skrf.network.overlap`
"""
new_freq = ntwk_list[0].frequency
for ntwk in ntwk_list[1:]:
new_freq = new_freq.overlap(ntwk.frequency)
return [ntwk.interpolate(new_freq) for ntwk in ntwk_list]
def concat_ports(ntwk_list: Sequence[Network], port_order: Literal["first", "second"] = "second",
*args, **kw) -> Network:
"""
Concatenate networks along the port axis.
Note
----
The `port_order` ='first', means front-to-back, while
`port_order`='second' means left-to-right. So, for example, when
concatenating two 2-networks, `A` and `B`, the ports are ordered as follows:
'first'
a0 o---o a1 -> 0 o---o 1
b0 o---o b1 -> 2 o---o 3
'second'
a0 o---o a1 -> 0 o---o 2
b0 o---o b1 -> 1 o---o 3
use `Network.renumber` to change port ordering.
Parameters
----------
ntwk_list : list of skrf.Networks
ntwks to concatenate
port_order : ['first', 'second']
Examples
--------
>>> concat([ntwkA,ntwkB])
>>> concat([ntwkA,ntwkB,ntwkC,ntwkD], port_order='second')
To put for lines in parallel
>>> from skrf import air
>>> l1 = air.line(100, z0=[0,1])
>>> l2 = air.line(300, z0=[2,3])
>>> l3 = air.line(400, z0=[4,5])
>>> l4 = air.line(400, z0=[6,7])
>>> concat_ports([l1,l2,l3,l4], port_order='second')
See Also
--------
stitch : concatenate two networks along the frequency axis
renumber : renumber ports
"""
# if ntwk list is longer than 2, recursively call myself
# until we are done
if len(ntwk_list) > 2:
def f(x, y):
return concat_ports([x, y], port_order='first')
out = reduce(f, ntwk_list)
# if we want to renumber ports, we have to wait
# until after the recursive calls
if port_order == 'second':
N = out.nports
old_order = list(range(N))
new_order = list(range(0, N, 2)) + list(range(1, N, 2))
out.renumber(new_order, old_order)
return out
ntwkA, ntwkB = ntwk_list
if ntwkA.frequency != ntwkB.frequency:
raise ValueError('ntwks don\'t have matching frequencies')
A = ntwkA.s
B = ntwkB.s
nf = A.shape[0] # num frequency points
nA = A.shape[1] # num ports on A
nB = B.shape[1] # num ports on B
nC = nA + nB # num ports on C
# create composite matrix, appending each sub-matrix diagonally
C = np.zeros((nf, nC, nC), dtype='complex')
C[:, :nA, :nA] = A.copy()
C[:, nA:, nA:] = B.copy()
ntwkC = ntwkA.copy()
ntwkC.s = C
ntwkC.z0 = np.hstack([ntwkA.z0, ntwkB.z0])
ntwkC.port_modes = np.hstack([ntwkA.port_modes, ntwkB.port_modes])
if port_order == 'second':
old_order = list(range(nC))
new_order = list(range(0, nC, 2)) + list(range(1, nC, 2))
ntwkC.renumber(old_order, new_order)
return ntwkC
def average(list_of_networks: Sequence[Network], polar: bool = False) -> Network:
"""
Calculate the average network from a list of Networks.
This is complex average of the s-parameters for a list of Networks.
Parameters
----------
list_of_networks : list of :class:`Network` objects
the list of networks to average
polar : boolean, optional
Average the mag/phase components individually. Default is False.
Returns
-------
ntwk : :class:`Network`
the resultant averaged Network
Note
----
This same function can be accomplished with properties of a
:class:`~skrf.networkset.NetworkSet` class.
Examples
--------
>>> ntwk_list = [rf.Network('myntwk.s1p'), rf.Network('myntwk2.s1p')]
>>> mean_ntwk = rf.average(ntwk_list)
"""
out_ntwk = list_of_networks[0].copy()
if polar:
# average the mag/phase components individually
raise NotImplementedError
else:
# average the re/im components individually
for a_ntwk in list_of_networks[1:]:
out_ntwk += a_ntwk
out_ntwk.s = out_ntwk.s / (len(list_of_networks))
return out_ntwk
def stdev(list_of_networks: Sequence[Network], attr: str = 's') -> np.ndarray:
"""
Calculate the standard deviation of a network attribute from a list of Networks.
This is the standard deviation for complex values of the s-parameters and other related attributes
for a list of Networks.
Parameters
----------
list_of_networks : list of :class:`Network` objects
the list of networks to average
attr : str, optional
name of attribute to average
Returns
-------
stdev_array : ndarray
An array of standard deviation values computed after combining the s-parameter values of the given networks.
Examples
--------
>>> ntwk_list = [rf.Network('myntwk.s1p'), rf.Network('myntwk2.s1p')]
>>> ntwk_stdev = rf.stdev(ntwk_list)
"""
return np.array([getattr(network, attr) for network in list_of_networks]).std(axis=0)
def one_port_2_two_port(ntwk: Network) -> Network:
"""
Calculate the 2-port network given a symmetric, reciprocal and lossless 1-port network.
Parameters
----------
ntwk : :class:`Network`
a symmetric, reciprocal and lossless one-port network.
Returns
-------
ntwk : :class:`Network`
the resultant two-port Network
"""
result = ntwk.copy()
result.s = np.zeros((result.frequency.npoints, 2, 2), dtype=complex)
s11 = ntwk.s[:, 0, 0]
result.s[:, 0, 0] = s11
result.s[:, 1, 1] = s11
## HACK: TODO: verify this mathematically
result.s[:, 0, 1] = np.sqrt(1 - np.abs(s11) ** 2) * \
np.exp(1j * (
np.angle(s11) + np.pi / 2. * (np.angle(s11) < 0) - np.pi / 2 * (np.angle(s11) > 0)))
result.s[:, 1, 0] = result.s[:, 0, 1]
result.z0 = np.hstack([ntwk.z0,ntwk.z0])
return result
def chopinhalf(ntwk: Network, *args, **kwargs) -> Network:
r"""
Chop a sandwich of identical, reciprocal 2-ports in half.
Given two identical, reciprocal 2-ports measured in series,
this returns one.
Note
----
In other words, given
.. math::
B = A\cdot A
Return A, where A port2 is connected to A port1. The result may
be found through signal flow graph analysis and is,
.. math::
a_{11} = \frac{b_{11}}{1+b_{12}}
a_{22} = \frac{b_{22}}{1+b_{12}}
a_{12}^2 = b_{21}(1-\frac{b_{11}b_{22}}{(1+b_{12})^2}
Parameters
----------
ntwk : :class:`Network`
a 2-port that is equal to two identical two-ports in cascade
"""
if ntwk.nports != 2:
raise ValueError('Only valid on 2ports')
b11, b22, b12 = ntwk.s11, ntwk.s22, ntwk.s12
kwargs['name'] = kwargs.get('name', ntwk.name)
a11 = b11 / (1 + b12)
a22 = b22 / (1 + b12)
a21 = b12 * (1 - b11 * b22 / (1 + b12) ** 2) # this is a21^2 here
a21.s = mf.sqrt_phase_unwrap(a21.s)
A = n_oneports_2_nport([a11, a21, a21, a22], *args, **kwargs)
return A
def evenodd2delta(n: Network, z0: NumberLike = 50, renormalize: bool = True,
doublehalf: bool = True) -> Network:
"""
Convert ntwk's s-matrix from even/odd mode into a delta (normal) s-matrix.
This assumes even/odd ports are ordered [1e,1o,2e,2o].
This is useful for handling coupler sims. Only 4-ports supported for now.
Parameters
----------
n : skrf.Network
Network with an even/odd mode s-matrix
z0: number, list of numbers
the characteristic impedance to set output networks port impedance
to , and used to renormalize s-matrix before conversio if
`renormalize`=True.
renormalize : Bool
if impedances are in even/odd then they must be renormalized to
get correct transformation
doublehalf: Bool
convert even/odd impedances to double/half their values. this is
required if data comes from hfss waveports .
Returns
-------
out: skrf.Network
same network as `n` but with s-matrix in normal delta basis
See Also
--------
Network.se2gmm, Network.gmm2se
"""
# move even and odd ports, so we have even and odd
# s-matrices contiguous
n_eo = n.copy()
n_eo.renumber([0,1,2,3],[0,2,1,3])
if doublehalf:
n_eo.z0 = n_eo.z0*[2,2,.5,.5]
# if the n_eo s-matrix is given with e/o z0's we need
# to renormalize into 50
if renormalize:
n_eo.renormalize(z0)
even = n_eo.s[:,0:2,0:2]
odd = n_eo.s[:,2:4,2:4]
# compute sub-networks for symmetric 4port
s_a = .5*(even+odd)
s_b = .5*(even-odd)
# create output network
n_delta = n_eo.copy()
n_delta.s[:,0:2,0:2] = n_delta.s[:,2:4,2:4] = s_a
n_delta.s[:,2:4,0:2] = n_delta.s[:,0:2,2:4] = s_b
n_delta.z0=z0
return n_delta
def subnetwork(ntwk: Network, ports: Sequence[int], offby:int = 1) -> Network:
"""
Return a subnetwork of a given Network from a list of port numbers.
A subnetwork is Network which S-parameters corresponds to selected ports,
with all non-selected ports considered matched.
The resulting subNetwork is given a new Network.name property
from the initial name and adding the kept ports indices
(ex: 'device' -> 'device13'). Such name should make easier the use
of functions such as n_twoports_2_nport.
Parameters
----------
ntwk : :class:`Network` object
Network to split into a subnetwork
ports : list of int
List of ports to keep in the resultant Network.
Indices are the Python indices (starts at 0)
offby : int
starting value for s-parameters indexes in the sub-Network name parameter.
A value of `1`, assumes that a s21 = ntwk.s[:,1,0]. Default is 1.
Returns
-------
subntwk : :class:`Network` object
Resulting subnetwork from the given ports
See also
--------
Network.subnetwork, n_twoports_2_nport
Examples
--------
>>> tee = rf.data.tee # 3 port Network
>>> tee12 = rf.subnetwork(tee, [0, 1]) # 2 port Network from ports 1 & 2, port 3 matched
>>> tee23 = rf.subnetwork(tee, [1, 2]) # 2 port Network from ports 2 & 3, port 1 matched
>>> tee13 = rf.subnetwork(tee, [0, 2]) # 2 port Network from ports 1 & 3, port 2 matched
"""
# forging subnetwork name
subntwk_name = (ntwk.name or 'p') + ''.join([str(index+offby) for index in ports])
# create a dummy Network with same frequency and z0 from the original
subntwk = Network(frequency=ntwk.frequency, z0=ntwk.z0[:,ports], name=subntwk_name)
# keep requested rows and columns of the s-matrix. ports can be not contiguous
subntwk.s = ntwk.s[np.ix_(np.arange(ntwk.s.shape[0]), ports, ports)]
# keep port_modes
subntwk.port_modes = [ntwk.port_modes[idx] for idx in ports]
# keep port_names
if ntwk.port_names:
subntwk.port_names = [ntwk.port_names[idx] for idx in ports]
return subntwk
def s_error(ntwkA: Network, ntwkB: Network, error_function: ErrorFunctionsT = "average_l2_norm") -> np.ndarray:
r"""
Compute the error between s-parameters of ntwkA and ntwkB.
Parameters
----------
ntwkA : :class:`Network` object
The first network.
ntwkB : :class:`Network` object
A second network used to compute the error with ntwkA
error_function : str
average_l1_norm, average_l2_norm, maximum_l1_norm, or average_normalized_l1_norm.
Returns
-------
error : :class:`numpy.ndarray`
The error between ntwkA and ntwkB
Description
-----------
Average L1 Norm. The weighted difference is the average magnitude of the difference between each
element of the S-parameter matrix.
.. math::
\delta = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |S_{ij}^A - S_{ij}^B|
Average L2 Norm. The weighted difference is the average squared magnitude of the difference
between each element of the S-parameter matrix.
.. math::
\delta = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |S_{ij}^A - S_{ij}^B|^2
Maximum L1 Norm. The maximum difference is the magnitude of the maximum difference between each
element of the S-parameter matrix (the magnitude of the largest difference between any pair of
entries in the S-parameter matrices).
.. math::
\delta = \max(|S_{ij}^A - S_{ij}^B|)
Average Normalized L1 Norm. The magnitude of the difference between each element of the
S-parameter matrix is calculated. Each difference is then normalized by the average magnitude of
the two matrix elements (one from each set).
.. math::
\delta = \frac{2}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{|S_{ij}^A - S_{ij}^B|}{|S_{ij}^A| + |S_{ij}^B|}
To express these in decibels, use:
.. math::
20\log_{10} \delta
"""
# check that ntwkA and ntwkB have the same frequency grid.
if ntwkA.frequency != ntwkB.frequency:
raise ValueError(f"Networks '{ntwkA.name}' and '{ntwkB.name}' must have the same frequency grid.")
nports_square = ntwkA.nports**2
# absolute value of the complex difference:
absdiff = np.abs(ntwkA.s - ntwkB.s)
# make string comparisons on lower case
error_function = error_function.lower()
if error_function == "average_l1_norm":
error = absdiff.sum(axis=1).sum(axis=1) / nports_square
elif error_function == "average_l2_norm":
error = (absdiff**2).sum(axis=1).sum(axis=1) / nports_square
elif error_function == "maximum_l1_norm":
error = absdiff.max(axis=1).max(axis=1)
elif error_function == "average_normalized_l1_norm":
temp = 2 * absdiff / (np.abs(ntwkA.s) + np.abs(ntwkB.s))
error = temp.sum(axis=1).sum(axis=1) / nports_square
else:
raise ValueError(f"Invalid error function '{error_function}'")
return error
## Building composite networks from sub-networks
def n_oneports_2_nport(ntwk_list: Sequence[Network], *args, **kwargs) -> Network:
r"""
Build an N-port Network from list of N one-ports.
Parameters
----------
ntwk_list : list of :class:`Network` objects
must follow left-right, top-bottom order, ie, s11,s12,s21,s22
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the N-port
Returns
-------
nport : n-port :class:`Network`
result
"""
nports = int(np.sqrt(len(ntwk_list)))
s_out = np.concatenate(
[np.concatenate(
[ntwk_list[(k + (l * nports))].s for k in range(nports)], 2) \
for l in range(nports)], 1)
z0 = np.concatenate(
[ntwk_list[k].z0 for k in range(0, nports ** 2, nports + 1)], 1)
frequency = ntwk_list[0].frequency
return Network(s=s_out, z0=z0, frequency=frequency, **kwargs)
def n_twoports_2_nport(ntwk_list: Sequence[Network], nports: int,
offby: int = 1, port_sep: str = "", **kwargs) -> Network:
r"""
Build an N-port Network from list of two-ports.
This method was made to reconstruct an n-port network from 2-port
subnetworks as measured by a 2-port VNA. So, for example, given a
3-port DUT, you might measure the set p12.s2p, p23.s2p, p13.s2p.
From these measurements, you can construct p.s3p.
By default all entries of result.s are filled with 0's, in case you
don't fully specify the entire s-matrix of the resultant ntwk.
Parameters
----------
ntwk_list : list of :class:`Network` objects
the names must contain the port index, ie 'p12' or 'p43',
ie. define the Network.name property of the :class:`Network` object.
nports: int
Number of ports to expect by the parser.
offby : int
starting value for s-parameters indices. ie a value of `1`,
assumes that a s21 = ntwk.s[:,1,0]
port_sep: str, default ""
string separating port 1 connection from port 2 for the vna connected to the
DUT. If constructing nport network with a maximum of 10 ports, it can be left as "".
To avoid ambiguity for more than 10 ports, port_sep is required to format the trace names
like S{}
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the N-port
Returns
-------
nport : n-port :class:`Network`
result
See Also
--------
concat_ports : concatenate ntwks along their ports
"""
if (nports > 10) and (port_sep == ""):
msg = "`port_sep` must not be empty when having more than 10 ports!"
raise ValueError(msg)
frequency = ntwk_list[0].frequency
nport = Network(frequency=frequency,
s=np.zeros(shape=(frequency.npoints, nports, nports)),
**kwargs)
for subntwk in ntwk_list:
for m, n in nport.port_tuples:
if m != n and m > n:
if f"{m + offby}{port_sep}{n + offby}" in subntwk.name:
pass
elif f"{n + offby}{port_sep}{m + offby}" in subntwk.name:
subntwk = subntwk.flipped()
else:
continue
for mn, jk in zip(product((m, n), repeat=2), product((0, 1), repeat=2)):
m, n, j, k = mn[0], mn[1], jk[0], jk[1]
nport.s[:, m, n] = subntwk.s[:, j, k]
nport.z0[:, m] = subntwk.z0[:, j]
return nport
def four_oneports_2_twoport(s11: Network, s12: Network, s21: Network, s22: Network, *args, **kwargs) -> Network:
r"""
Build a 2-port Network from list of four 1-ports.
Parameters
----------
s11 : one-port :class:`Network`
s11
s12 : one-port :class:`Network`
s12
s21 : one-port :class:`Network`
s21
s22 : one-port :class:`Network`
s22
\*args, \*\*kwargs :
passed to :func:`Network.__init__` for the twoport
Returns
-------
twoport : two-port :class:`Network`
result
See Also
--------
n_oneports_2_nport
"""
return n_oneports_2_nport([s11, s12, s21, s22], *args, **kwargs)
## Functions operating on s-parameter matrices
def connect_s(A: np.ndarray, k: int, B: np.ndarray, l: int, num: int = 1) -> np.ndarray:
"""
Connect two n-port networks' s-matrices together.
Specifically, connect port `k` on network `A` to port `l` on network
`B`. The resultant network has nports = (A.rank + B.rank-2). This
function operates on, and returns s-matrices. The function
:func:`connect` operates on :class:`Network` types.
Parameters
----------
A : :class:`numpy.ndarray`
S-parameter matrix of `A`, shape is fxnxn
k : int
port index on `A` (port indices start from 0)
B : :class:`numpy.ndarray`
S-parameter matrix of `B`, shape is fxnxn
l : int
port index on `B`
num : int
number of consecutive ports to connect (default 1)
Returns
-------
C : :class:`numpy.ndarray`
new S-parameter matrix
Note
----
Internally, this function creates a larger composite network
and calls the :func:`innerconnect_s` function. see that function for more
details about the implementation
See Also
--------
connect : operates on :class:`Network` types
innerconnect_s : function which implements the connection algorithm
innerconnect_s_lstsq : actual S-parameter connection algorithm using lstsq.
"""
if k > A.shape[-1] - 1 or l > B.shape[-1] - 1:
raise (ValueError('port indices are out of range'))
nf = A.shape[0] # num frequency points
nA = A.shape[1] # num ports on A
nB = B.shape[1] # num ports on B
nC = nA + nB # num ports on C
# create composite matrix, appending each sub-matrix diagonally
C = np.zeros((nf, nC, nC), dtype='complex', order='F')
# if ntwkB is a 2port, then keep port indices where you expect.
if nB == 2 and nA > 2 and num == 1:
"""
Pre-renumber the s-parameters:
|A1 A2| |A1 0 A2| |A1 A2 0|
| | + |B| = |0 B 0 |, rather than |A3 A4 0|
|A3 A4| |A3 0 A4| |0 0 B|
"""
C[:, :k, :k] = A[:, :k, :k]
C[:, :k, k + nB :] = A[:, :k, k:]
C[:, k + nB :, :k] = A[:, k:, :k]
C[:, k + nB :, k + nB :] = A[:, k:, k:]
C[:, k : k + nB, k : k + nB] = B
# call innerconnect_s() on composite matrix C
return innerconnect_s(C, k + nB, k + l)
else:
C[:, :nA, :nA] = A
C[:, nA:, nA:] = B
# call innerconnect_s() on composite matrix C
return innerconnect_s(C, k, nA + l)
def innerconnect_s(A: np.ndarray, k: int, l: int) -> np.ndarray:
"""
Connect two ports of a single n-port network's s-matrix.
Specifically, connect port `k` to port `l` on `A`. This results in
a (n-2)-port network. This function operates on, and returns
s-matrices. The function :func:`innerconnect` operates on
:class:`Network` types.
Note
----
The algorithm used to calculate the resultant network is called a
'sub-network growth', can be found in [#]_. The original paper
describing the algorithm is given in [#]_.
Parameters
----------
A : :class:`numpy.ndarray`
S-parameter matrix of `A`, shape is fxnxn
k : int
port index on `A` (port indices start from 0)
l : int
port index on `A`
Returns
-------
C : :class:`numpy.ndarray`
new S-parameter matrix
See Also
--------
innerconnect_s_lstsq : actual S-parameter connection algorithm using lstsq.
References
----------
.. [#] Compton, R.C.; , "Perspectives in microwave circuit analysis," Circuits and Systems, 1989.,
Proceedings of the 32nd Midwest Symposium on , vol., no., pp.716-718 vol.2, 14-16 Aug 1989.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=101955&isnumber=3167
.. [#] Filipsson, Gunnar; , "A New General Computer Algorithm for S-Matrix Calculation of Interconnected Multiports"
,Microwave Conference, 1981. 11th European , vol., no., pp.700-704, 7-11 Sept. 1981.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4131699&isnumber=4131585
"""
if k > A.shape[-1] - 1 or l > A.shape[-1] - 1:
raise (ValueError("port indices are out of range"))
nA = A.shape[1] # num of ports on input s-matrix
# Vectorized version of the following loop
# through ports to calculate resultant s-parameters
# for i in range(nA):
# for j in range(nA):
# C[:, i, j] = A[:, i, j] + (
# A[:, k, j] * A[:, i, l] * (1 - A[:, l, k])
# + A[:, l, j] * A[:, i, k] * (1 - A[:, k, l])
# + A[:, k, j] * A[:, l, l] * A[:, i, k]
# + A[:, l, j] * A[:, k, k] * A[:, i, l]
# ) / ((1 - A[:, k, l]) * (1 - A[:, l, k]) - A[:, k, k] * A[:, l, l])
#
# external ports index
ext_i = [i for i in range(nA) if i not in (k, l)]
# Indexing sub-matrices of internal ports (only k, l)
Akl = 1.0 - A[:, k, l]
Alk = 1.0 - A[:, l, k]
Akk = A[:, k, k]
All = A[:, l, l]
# create temporary matrices for calculation
det = (Akl * Alk - Akk * All)
# Check if the determinant is almost zero, in which case use lstsq solution
if np.allclose(det, 0.0):
warnings.warn(
'Singular matrix detected, using numpy.linalg.lstsq instead.',
RuntimeWarning,
stacklevel=2
)
return innerconnect_s_lstsq(A, k, l)
# Indexing sub-matrices of other external ports
Ake = A[:, k, ext_i].T
Ale = A[:, l, ext_i].T
Aek = A[:, ext_i, k].T
Ael = A[:, ext_i, l].T
# Create an suit-sized s-matrix, to store the result
i, j = np.meshgrid(ext_i, ext_i, indexing='ij', sparse=True)
C = A[:, i, j]
tmp_a = Ael * (Alk / det) + Aek * (All / det)
tmp_b = Ael * (Akk / det) + Aek * (Akl / det)
# loop through ports and calculates resultant s-parameters
for i in range(nA - 2):
C[:, i, :] += (Ake * tmp_a[i] + Ale * tmp_b[i]).T
return C
def innerconnect_s_lstsq(A: np.ndarray, k: int, l: int) -> np.ndarray:
"""
Connect two ports of a single n-port network's s-matrix using a
least-squares solution. It uses a least-squares approach to handle
cases where the determinant of the sub-matrix is close to zero, which
can lead to numerical instability in the direct formula.
Note
----
If the determinant of the sub-matrix is not close to zero, it is recommended
to use the `innerconnect_s` function instead, which uses a direct formula
for better numerical stability.
Parameters
----------
A : :class:`numpy.ndarray`
S-parameter matrix of `A`, shape is fxnxn
k : int
port index on `A` (port indices start from 0)
l : int
port index on `A`
Returns
-------
AEE : :class:`numpy.ndarray`
new S-parameter matrix
See Also
--------
connect_s : actual S-parameter connection algorithm.
innerconnect_s : actual S-parameter connection algorithm.
"""
if k > A.shape[-1] - 1 or l > A.shape[-1] - 1:
raise (ValueError("port indices are out of range"))
nA = A.shape[1] # num of ports on input s-matrix
# Identify internal and external port indices
int_i = (k, l)
ext_i = [i for i in range(nA) if i not in int_i]
# Extract sub-matrices for internal and external ports
AI = A[:, int_i[::-1], :]
AE = A[:, ext_i, :]
AII = AI[:, :, int_i]
AIE = AI[:, :, ext_i]
AEI = AE[:, :, int_i]
AEE = AE[:, :, ext_i]
# Preprocess AII and AEE matrix
AII = np.eye(2)[None, :, :] - AII
C = np.array(AEE, order='C')
# Perform least-squares solution for each frequency
for i in range(A.shape[0]):
C[i, :, :] += AEI[i, :, :] @ np.linalg.lstsq(AII[i, :, :], AIE[i, :, :], rcond=None)[0]
return C
## network parameter conversion
def s2z(s: np.ndarray, z0: NumberLike = 50, s_def: SdefT = S_DEF_DEFAULT) -> np.ndarray:
r"""
Convert scattering parameters [#]_ to impedance parameters [#]_.
For power-waves, Eq.(19) from [#Kurokawa]_:
.. math::
Z = F^{-1} (1 - S)^{-1} (S G + G^*) F
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(74) from [#Marks]_:
.. math::
Z = (1 - U^{-1} S U)^{-1} (1 + U^{-1} S U) G
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances.
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
z : complex array-like
impedance parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
s = np.array(s, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# # Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = np.zeros_like(s) # (nfreqs, nports, nports)
np.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Power-waves. Eq.(19) from [Kurokawa et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = np.zeros_like(s), np.zeros_like(s)
np.einsum('ijj->ij', F)[...] = 1.0/(2*np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
z = np.linalg.solve(mf.nudge_eig((Id - s) @ F), (s @ G + np.conjugate(G)) @ F)
elif s_def == 'pseudo':
# Pseudo-waves. Eq.(74) from [Marks et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = np.zeros_like(s), np.zeros_like(s)
np.einsum('ijj->ij', U)[...] = np.sqrt(z0.real)/np.abs(z0)
np.einsum('ijj->ij', ZR)[...] = z0
USU = np.linalg.solve(U, s @ U)
z = np.linalg.solve(mf.nudge_eig(Id - USU), (Id + USU) @ ZR)
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrtz0 = np.zeros_like(s)
np.einsum('ijj->ij', sqrtz0)[...] = np.sqrt(z0)
z = sqrtz0 @ np.linalg.solve(mf.nudge_eig(Id - s), (Id + s) @ sqrtz0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return z
def s2y(s: np.ndarray, z0:NumberLike = 50, s_def: SdefT = S_DEF_DEFAULT) -> np.ndarray:
"""
Convert scattering parameters [#]_ to admittance parameters [#]_.
Equations are the inverse of :func:`s2z`.
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#]_,
'pseudo' for pseudo-waves definition [#]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
y : complex array-like
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
s = np.array(s, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = np.zeros_like(s) # (nfreqs, nports, nports)
np.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Power-waves. Inverse of Eq.(19) from [Kurokawa et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = np.zeros_like(s), np.zeros_like(s)
np.einsum('ijj->ij', F)[...] = 1.0/(2*np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
y = np.linalg.solve(mf.nudge_eig((s @ G + np.conjugate(G)) @ F), (Id - s) @ F)
elif s_def == 'pseudo':
# pseudo-waves. Inverse of Eq.(74) from [Marks et al.]
YR, U = np.zeros_like(s), np.zeros_like(s)
np.einsum('ijj->ij', U)[...] = np.sqrt(z0.real)/np.abs(z0)
np.einsum('ijj->ij', YR)[...] = 1/z0
USU = np.linalg.solve(U, s @ U)
y = YR @ np.linalg.solve(mf.nudge_eig(Id + USU), Id - USU)
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrty0 = np.zeros_like(s) # (nfreqs, nports, nports)
np.einsum('ijj->ij', sqrty0)[...] = np.sqrt(1.0/z0)
y = sqrty0 @ (Id - s) @ np.linalg.solve(mf.nudge_eig(Id + s), sqrty0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return y
def s2t(s: np.ndarray) -> np.ndarray:
"""
Convert scattering parameters [#]_ to scattering transfer parameters [#]_.
transfer parameters are also referred to as
'wave cascading matrix' [#]_, this function only operates on 2N-ports
networks with same number of input and output ports, also known as
'balanced networks'.
Parameters
----------
s : :class:`numpy.ndarray` (shape fx2nx2n)
scattering parameter matrix
Returns
-------
t : np.ndarray
scattering transfer parameters (aka wave cascading matrix)
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [#] Janusz A. Dobrowolski, "Scattering Parameter in RF and Microwave Circuit Analysis and Design",
Artech House, 2016, pp. 65-68
"""
z, y, x = s.shape
# test here for even number of ports.
# s-parameter networks are square matrix, so x and y are equal.
if(x % 2 != 0):
raise IndexError('Network does not have an even number of ports')
t = np.zeros((z, y, x), dtype=complex)
yh = int(y/2)
xh = int(x/2)
# S_II,I^-1
sinv = np.linalg.inv(s[:, yh:y, 0:xh])
# np.linalg.inv test for singularity (matrix not invertible)
for k in range(len(s)):
w = sinv[k].dot(s[k, yh:y, xh:x])
# T_I,I = S_I,II - S_I,I . S_II,I^-1 . S_II,II
t[k, 0:yh, 0:xh] = s[k, 0:yh, xh:x] - s[k, 0:yh, 0:xh].dot(w)
# T_I,II = S_I,I . S_II,I^-1
t[k, 0:yh, xh:x] = s[k, 0:yh, 0:xh].dot(sinv[k])
# T_II,I = -S_II,I^-1 . S_II,II
t[k, yh:y, 0:xh] = -w
# T_II,II = S_II,I^-1
t[k, yh:y, xh:x] = sinv[k]
return t
def s2s(s: NumberLike, z0: NumberLike, s_def_new: SdefT, s_def_old: SdefT):
r"""
Convert scattering parameters to scattering parameters with different
definition.
Calculates port voltages and currents using the old definition and
then calculates the incoming and reflected waves from the voltages
using the new S-parameter definition.
Only has effect if z0 has at least one complex impedance port.
Parameters
----------
s : complex array-like
impedance parameters
z0 : complex array-like or number
port impedances
s_def_new : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the output network.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
s_def_old : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the input network.
'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Returns
-------
s : complex array-like
scattering parameters
References
----------
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
if s_def_new == s_def_old:
# Nothing to do.
return s
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
if np.isreal(z0).all():
# Nothing to do because all port impedances are real so the used
# definition (power or travelling) does not make a difference.
return s
# Calculate port voltages and currents using the old s_def.
F, G = np.zeros_like(s), np.zeros_like(s)
if s_def_old == 'power':
np.einsum('ijj->ij', F)[...] = 1.0/(np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
Id = np.eye(s.shape[1], dtype=complex)
v = F @ (G.conjugate() + G @ s)
i = F @ (Id - s)
elif s_def_old == 'pseudo':
np.einsum('ijj->ij', F)[...] = abs(z0)/np.sqrt(z0.real)
np.einsum('ijj->ij', G)[...] = abs(z0)/(z0*np.sqrt(z0.real))
Id = np.eye(s.shape[1], dtype=complex)
v = F @ (Id + s)
i = G @ (Id - s)
elif s_def_old == 'traveling':
np.einsum('ijj->ij', F)[...] = np.sqrt(z0)
np.einsum('ijj->ij', G)[...] = 1/(np.sqrt(z0))
Id = np.eye(s.shape[1], dtype=complex)
v = F @ (Id + s)
i = G @ (Id - s)
else:
raise ValueError(f'Unknown s_def: {s_def_old}')
# Calculate a and b waves from the voltages and currents.
F, G = np.zeros_like(s), np.zeros_like(s)
if s_def_new == 'power':
np.einsum('ijj->ij', F)[...] = 1/(2*np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G.conjugate() @ i)
elif s_def_new == 'pseudo':
np.einsum('ijj->ij', F)[...] = np.sqrt(z0.real)/(2*abs(z0))
np.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G @ i)
elif s_def_new == 'traveling':
np.einsum('ijj->ij', F)[...] = 1/(np.sqrt(z0))
np.einsum('ijj->ij', G)[...] = z0
a = F @ (v + G @ i)
b = F @ (v - G @ i)
else:
raise ValueError(f'Unknown s_def: {s_def_old}')
# New S-parameter matrix from a and b waves.
s_new = np.zeros_like(s)
for n in range(nports):
for m in range(nports):
s_new[:, m, n] = b[:, m, n] / a[:, n, n]
return s_new
def z2s(z: NumberLike, z0:NumberLike = 50, s_def: SdefT = S_DEF_DEFAULT) -> np.ndarray:
r"""
Convert impedance parameters [#]_ to scattering parameters [#]_.
For power-waves, Eq.(18) from [#Kurokawa]_:
.. math::
S = F (Z – G^*) (Z + G)^{-1} F^{-1}
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(73) from [#Marks]_:
.. math::
S = U (Z - G) (Z + G)^{-1} U^{-1}
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
z : complex array-like
impedance parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
s : complex array-like
scattering parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = z.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
z = np.array(z, dtype=complex)
if s_def == 'power':
# Power-waves. Eq.(18) from [Kurokawa et al.3]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = np.zeros_like(z), np.zeros_like(z)
np.einsum('ijj->ij', F)[...] = 1.0/(2*np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
s = mf.rsolve(F @ (z + G), F @ (z - np.conjugate(G)))
elif s_def == 'pseudo':
# Pseudo-waves. Eq.(73) from [Marks et al.]
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = np.zeros_like(z), np.zeros_like(z)
np.einsum('ijj->ij', U)[...] = np.sqrt(z0.real)/np.abs(z0)
np.einsum('ijj->ij', ZR)[...] = z0
s = mf.rsolve(U @ (z + ZR), U @ (z - ZR))
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id, sqrty0 = np.zeros_like(z), np.zeros_like(z) # (nfreqs, nports, nports)
np.einsum('ijj->ij', Id)[...] = 1.0
np.einsum('ijj->ij', sqrty0)[...] = np.sqrt(1.0/z0)
s = mf.rsolve(sqrty0 @ z @ sqrty0 + Id, sqrty0 @ z @ sqrty0 - Id)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return s
def z2y(z: np.ndarray) -> np.ndarray:
"""
Convert impedance parameters [#]_ to admittance parameters [#]_.
.. math::
y = z^{-1}
Parameters
----------
z : complex array-like
impedance parameters
Returns
-------
y : complex array-like
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
"""
if np.amin(np.linalg.matrix_rank(z)) < np.shape(z)[1]:
# matrix is deficient, direct inversion not possible
# try detour via S parameters
warnings.warn('The Z matrix is singular. Conversion to Y parameters could be invalid. Trying s2y(z2s(z)).',
UserWarning, stacklevel=2)
return s2y(z2s(z))
else:
# matrix has full rank, direct inversion possible
return np.linalg.inv(z)
def z2t(z: np.ndarray) -> NoReturn:
"""
Not Implemented yet.
Convert impedance parameters [#]_ to scattering transfer parameters [#]_.
Parameters
----------
z : complex array-like or number
impedance parameters
Returns
-------
s : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
def a2s(a: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert abcd parameters to s parameters.
Parameters
----------
a : complex array-like
abcd parameters
z0 : complex array-like or number
port impedances
Returns
-------
s : complex array-like
abcd parameters
"""
nfreqs, nports, nports = a.shape
if nports != 2:
raise IndexError('abcd parameters are defined for 2-ports networks only')
z0 = fix_z0_shape(z0, nfreqs, nports)
z01 = z0[:,0]
z02 = z0[:,1]
A = a[:,0,0]
B = a[:,0,1]
C = a[:,1,0]
D = a[:,1,1]
denom = A*z02 + B + C*z01*z02 + D*z01
s = np.array([
[
(A*z02 + B - C*z01.conj()*z02 - D*z01.conj() ) / denom,
(2*np.sqrt(z01.real * z02.real)) / denom,
],
[
(2*(A*D - B*C)*np.sqrt(z01.real * z02.real)) / denom,
(-A*z02.conj() + B - C*z01*z02.conj() + D*z01) / denom,
],
]).transpose()
return s
#return z2s(a2z(a), z0)
def a2z(a: np.ndarray) -> np.ndarray:
"""
Convert abcd parameters to z parameters [#]_.
Parameters
----------
a : :class:`numpy.ndarray` (shape fx2x2)
abcd parameter matrix
Returns
-------
z : np.ndarray
impedance parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
return z2a(a)
def z2a(z: np.ndarray) -> np.ndarray:
"""
Converts impedance parameters to abcd parameters [#]_.
Parameters
----------
z : :class:`numpy.ndarray` (shape fx2x2)
impedance parameter matrix
Returns
-------
abcd : np.ndarray
scattering transfer parameters (aka wave cascading matrix)
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
abcd = np.array([
[z[:, 0, 0] / z[:, 1, 0],
1. / z[:, 1, 0]],
[(z[:, 0, 0] * z[:, 1, 1] - z[:, 1, 0] * z[:, 0, 1]) / z[:, 1, 0],
z[:, 1, 1] / z[:, 1, 0]],
]).transpose()
return abcd
def s2a(s: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert scattering parameters to abcd parameters [#]_.
Parameters
----------
s : :class:`numpy.ndarray` (shape `fx2x2`)
impedance parameter matrix
z0: number or, :class:`numpy.ndarray` (shape `fx2`)
port impedance
Returns
-------
abcd : np.ndarray
scattering transfer parameters (aka wave cascading matrix)
References
----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
nfreqs, nports, nports = s.shape
if nports != 2:
raise IndexError('abcd parameters are defined for 2-ports networks only')
z0 = fix_z0_shape(z0, nfreqs, nports)
z01 = z0[:,0]
z02 = z0[:,1]
denom = (2*s[:,1,0]*np.sqrt(z01.real * z02.real))
a = np.array([
[
((z01.conj() + s[:,0,0]*z01)*(1 - s[:,1,1]) + s[:,0,1]*s[:,1,0]*z01) / denom,
((1 - s[:,0,0])*(1 - s[:,1,1]) - s[:,0,1]*s[:,1,0]) / denom,
],
[
((z01.conj() + s[:,0,0]*z01)*(z02.conj() + s[:,1,1]*z02) - s[:,0,1]*s[:,1,0]*z01*z02) / denom,
((1 - s[:,0,0])*(z02.conj() + s[:,1,1]*z02) + s[:,0,1]*s[:,1,0]*z02) / denom,
],
]).transpose()
return a
def y2s(y: NumberLike, z0:NumberLike = 50, s_def: SdefT = S_DEF_DEFAULT) -> Network:
r"""
Convert admittance parameters [#]_ to scattering parameters [#]_.
For power-waves, from [#Kurokawa]_:
.. math::
S = F (1 – G Y) (1 + G Y)^{-1} F^{-1}
where :math:`G = diag([Z_0])` and :math:`F = diag([1/2\sqrt{|Re(Z_0)|}])`
For pseudo-waves, Eq.(73) from [#Marks]_:
.. math::
S = U (Y^{-1} - G) (Y^{-1} + G)^{-1} U^{-1}
where :math:`U = \sqrt{Re(Z_0)}/|Z_0|`
Parameters
----------
y : complex array-like
admittance parameters
z0 : complex array-like or number
port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition : 'power' for power-waves definition [#Kurokawa]_,
'pseudo' for pseudo-waves definition [#Marks]_.
'traveling' corresponds to the initial implementation.
Default is 'power'.
Returns
-------
s : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#Kurokawa] Kurokawa, Kaneyuki "Power waves and the scattering matrix",
IEEE Transactions on Microwave Theory and Techniques, vol.13, iss.2, pp. 194–202, March 1965.
.. [#Marks] Marks, R. B. and Williams, D. F. "A general waveguide circuit theory",
Journal of Research of National Institute of Standard and Technology, vol.97, iss.5, pp. 533–562, 1992.
"""
nfreqs, nports, nports = y.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
# Add a small real part in case of pure imaginary char impedance
# to prevent numerical errors for both pseudo and power waves definitions
z0 = z0.astype(dtype=complex)
z0[z0.real == 0] += ZERO
y = np.array(y, dtype=complex)
# The following is a vectorized version of a for loop for all frequencies.
# Creating Identity matrices of shape (nports,nports) for each nfreqs
Id = np.zeros_like(y) # (nfreqs, nports, nports)
np.einsum('ijj->ij', Id)[...] = 1.0
if s_def == 'power':
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
F, G = np.zeros_like(y), np.zeros_like(y)
np.einsum('ijj->ij', F)[...] = 1.0/(2*np.sqrt(z0.real))
np.einsum('ijj->ij', G)[...] = z0
s = mf.rsolve(F @ (Id + G @ y), F @ (Id - np.conjugate(G) @ y))
elif s_def == 'pseudo':
# Pseudo-waves
# Creating diagonal matrices of shape (nports,nports) for each nfreqs
ZR, U = np.zeros_like(y), np.zeros_like(y)
np.einsum('ijj->ij', U)[...] = np.sqrt(z0.real)/np.abs(z0)
np.einsum('ijj->ij', ZR)[...] = z0
# This formulation is not very good numerically
UY = mf.rsolve(mf.nudge_eig(y, cond=1e-12), U)
s = mf.rsolve(UY + U @ ZR, -2 * U @ ZR) + Id
elif s_def == 'traveling':
# Traveling-waves definition. Cf.Wikipedia "Impedance parameters" page.
# Creating diagonal matrices of shape (nports, nports) for each nfreqs
sqrtz0 = np.zeros_like(y) # (nfreqs, nports, nports)
np.einsum('ijj->ij', sqrtz0)[...] = np.sqrt(z0)
s = mf.rsolve(Id + sqrtz0 @ y @ sqrtz0, Id - sqrtz0 @ y @ sqrtz0)
else:
raise ValueError(f'Unknown s_def: {s_def}')
return s
def y2z(y: np.ndarray) -> np.ndarray:
"""
Convert admittance parameters [#]_ to impedance parameters [#]_.
.. math::
z = y^{-1}
Parameters
----------
y : complex array-like
admittance parameters
Returns
-------
z : complex array-like
impedance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
if np.amin(np.linalg.matrix_rank(y)) < np.shape(y)[1]:
# matrix is deficient, direct inversion not possible
# try detour via S parameters
warnings.warn('The Y matrix is singular. Conversion to Z parameters could be invalid. Trying s2z(y2s(y)).',
UserWarning, stacklevel=2)
return s2z(y2s(y))
else:
# matrix has full rank, direct inversion possible
return np.linalg.inv(y)
def y2t(y: np.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert admittance parameters [#]_ to scattering-transfer parameters [#]_.
Parameters
----------
y : complex array-like or number
impedance parameters
Returns
-------
t : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Admittance_parameters
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
def t2s(t: np.ndarray) -> np.ndarray:
"""
Converts scattering transfer parameters [1]_ to scattering parameters [2]_.
transfer parameters are also referred to as
'wave cascading matrix', this function only operates on 2N-ports
networks with same number of input and output ports, also known as
'balanced networks' [3]_.
Parameters
----------
t : :class:`numpy.ndarray` (shape fx2nx2n)
scattering transfer parameters
Returns
-------
s : :class:`numpy.ndarray`
scattering parameter matrix.
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [1] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [2] http://en.wikipedia.org/wiki/S-parameters
.. [3] Janusz A. Dobrowolski, "Scattering Parameter in RF and Microwave Circuit Analysis and Design",
Artech House, 2016, pp. 65-68
"""
z, y, x = t.shape
# test here for even number of ports.
# t-parameter networks are square matrix, so x and y are equal.
if(x % 2 != 0):
raise IndexError('Network does not have an even number of ports')
s = np.zeros((z, y, x), dtype=complex)
yh = int(y/2)
xh = int(x/2)
# T_II,II^-1
tinv = np.linalg.inv(t[:, yh:y, xh:x])
# np.linalg.inv test for singularity (matrix not invertible)
for k in range(len(s)):
# S_I,I = T_I,II . T_II,II^-1
s[k, 0:yh, 0:xh] = t[k, 0:yh, xh:x].dot(tinv[k])
# S_I,II = T_I,I - T_I,I,II . T_II,II^-1 . T_II,I
s[k, 0:yh, xh:x] = t[k, 0:yh, 0:xh]-t[k, 0:yh, xh:x].dot(tinv[k].dot(t[k, yh:y, 0:xh]))
# S_II,I = T_II,II^-1
s[k, yh:y, 0:xh] = tinv[k]
# S_II,II = -T_II,II^-1 . T_II,I
s[k, yh:y, xh:x] = -tinv[k].dot(t[k, yh:y, 0:xh])
return s
def t2z(t: np.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert scattering transfer parameters [#]_ to impedance parameters [#]_.
Parameters
----------
t : complex array-like or number
impedance parameters
Returns
-------
z : complex array-like or number
scattering parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
.. [#] http://en.wikipedia.org/wiki/impedance_parameters
"""
raise (NotImplementedError)
def t2y(t: np.ndarray) -> NoReturn:
"""
Not Implemented Yet.
Convert scattering transfer parameters to admittance parameters [#]_.
Parameters
----------
t : complex array-like or number
t-parameters
Returns
-------
y : complex array-like or number
admittance parameters
See Also
--------
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
----------
.. [#] http://en.wikipedia.org/wiki/Scattering_transfer_parameters#Scattering_transfer_parameters
"""
raise (NotImplementedError)
def h2z(h: np.ndarray) -> np.ndarray:
"""
Convert hybrid parameters to z parameters [#]_.
Parameters
----------
h : :class:`numpy.ndarray` (shape fx2x2)
hybrid parameter matrix
Returns
-------
z : np.ndarray
impedance parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
return z2h(h)
def h2s(h: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert hybrid parameters to s parameters.
Parameters
----------
h : complex array-like
hybrid parameters
z0 : complex array-like or number
port impedances
Returns
-------
s : complex array-like
scattering parameters
"""
return z2s(h2z(h), z0)
def s2h(s: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert scattering parameters [#]_ to hybrid parameters [#]_.
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances.
Returns
-------
h : complex array-like
hybrid parameters
References
----------
.. [#] http://en.wikipedia.org/wiki/S-parameters
.. [#] http://en.wikipedia.org/wiki/Two-port_network#Hybrid_parameters_(h-parameters)
"""
return z2h(s2z(s, z0))
def z2h(z: np.ndarray) -> np.ndarray:
"""
Convert impedance parameters to hybrid parameters [#]_.
Parameters
----------
z : :class:`numpy.ndarray` (shape fx2x2)
impedance parameter matrix
Returns
-------
h : np.ndarray
hybrid parameters
See Also
--------
inv : calculates inverse s-parameters
s2z
s2y
s2t
z2s
z2y
z2t
y2s
y2z
y2t
t2s
t2z
t2y
Network.s
Network.y
Network.z
Network.t
References
-----------
.. [#] https://en.wikipedia.org/wiki/Two-port_network
"""
h = np.array([
[(z[:, 0, 0] * z[:, 1, 1] - z[:, 1, 0] * z[:, 0, 1]) / z[:, 1, 1],
-z[:, 1, 0] / z[:, 1, 1]],
[z[:, 0, 1] / z[:, 1, 1],
1. / z[:, 1, 1]],
]).transpose()
return h
def g2s(g: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert inverse hybrid parameters to s parameters.
Parameters
----------
g : complex array-like
inverse hybrid parameters
z0 : complex array-like or number
port impedances
Returns
-------
s : complex array-like
scattering parameters
"""
return h2s(np.linalg.inv(g), z0)
def s2g(s: np.ndarray, z0: NumberLike = 50) -> np.ndarray:
"""
Convert inverse hybrid parameters to s parameters.
Parameters
----------
s : complex array-like
scattering parameters
z0 : complex array-like or number
port impedances
Returns
-------
g : complex array-like
inverse hybrid parameters
"""
return z2h(s2y(s, z0))
## these methods are used in the secondary properties
def passivity(s: np.ndarray) -> np.ndarray:
r"""
Passivity metric for a multi-port network.
A metric which is proportional to the amount of power lost in a
multiport network, depending on the excitation port. Specifically,
this returns a matrix who's diagonals are equal to the total
power received at all ports, normalized to the power at a single
excitement port.
mathematically, this is a test for unitary-ness of the
s-parameter matrix [#]_.
for two port this is
.. math::
\sqrt( |S_{11}|^2 + |S_{21}|^2 \, , \, |S_{22}|^2+|S_{12}|^2)
in general it is
.. math::
\sqrt( S^H \cdot S)
where :math:`H` is conjugate transpose of S, and :math:`\cdot`
is dot product.
Note
----
The total amount of power dissipated in a network depends on the
port matches. For example, given a matched attenuator, this metric
will yield the attenuation value. However, if the attenuator is
cascaded with a mismatch, the power dissipated will not be equivalent
to the attenuator value, nor equal for each excitation port.
Returns
-------
passivity : :class:`numpy.ndarray` of shape fxnxn
References
------------
.. [#] http://en.wikipedia.org/wiki/Scattering_parameters#Lossless_networks
"""
if s.shape[-1] == 1:
raise (ValueError('Doesn\'t exist for one ports'))
pas_mat = s.copy()
for f in range(len(s)):
pas_mat[f, :, :] = np.sqrt(np.dot(s[f, :, :].conj().T, s[f, :, :]))
return pas_mat
def reciprocity(s: np.ndarray) -> np.ndarray:
"""
Reciprocity metric for a multi-port network.
This returns the magnitude of the difference between the
s-parameter matrix and its transpose.
for two port this is
.. math::
| S - S^T |
where :math:`T` is transpose of S
Parameters
----------
s : :class:`numpy.ndarray` of shape `fxnxn`
s-parameter matrix
Returns
-------
reciprocity : :class:`numpy.ndarray` of shape `fxnxn`
"""
if s.shape[-1] == 1:
raise (ValueError('Doesn\'t exist for one ports'))
rec_mat = s.copy()
for f in range(len(s)):
rec_mat[f, :, :] = abs(s[f, :, :] - s[f, :, :].T)
return rec_mat
## renormalize
def renormalize_s(
s: np.ndarray, z_old: NumberLike, z_new: NumberLike,
s_def: SdefT = S_DEF_DEFAULT, s_def_old: SdefT | None = None
) -> np.ndarray:
"""
Renormalize a s-parameter matrix given old and new port impedances.
Can be also used to convert between different S-parameter definitions.
Note
----
This re-normalization assumes power-wave formulation per default.
To use the pseudo-wave formulation, use s_def='pseudo'.
However, results should be the same for real-valued characteristic impedances.
See the [#Marks]_ and [#Anritsu]_ for more details.
Note
----
This just calls ::
z2s(s2z(s, z0=z_old, s_def=s_def_old), z0=z_new, s_def=s_def)
Parameters
----------
s : complex array of shape `fxnxn`
s-parameter matrix
z_old : complex array of shape `fxnxn` or a scalar
old (original) port impedances
z_new : complex array of shape `fxnxn` or a scalar
new port impedances
s_def : str -> s_def : can be: 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the output network:
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Default is 'power'.
s_def_old : str -> s_def : can be: None, 'power', 'pseudo' or 'traveling'
Scattering parameter definition of the input network:
None to copy s_def.
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
Returns
-------
:class:`numpy.ndarray`
renormalized s-parameter matrix (shape `fxnxn`)
See Also
--------
Network.renormalize : method of Network to renormalize s
fix_z0_shape
s2z
z2s
References
----------
.. [#Marks] R. B. Marks and D. F. Williams, "A general waveguide circuit theory,"
Journal of Research of the National Institute of Standards and Technology, vol. 97, no. 5, pp. 533-561, 1992.
.. [#Anritsu] Anritsu Application Note: Arbitrary Impedance,
https://web.archive.org/web/20200111134414/https://archive.eetasia.com/www.eetasia.com/ARTICLES/2002MAY/2002MAY02_AMD_ID_NTES_AN.PDF?SOURCES=DOWNLOAD
Examples
--------
>>> s = zeros(shape=(101,2,2))
>>> renormalize_s(s, 50,25)
"""
if s_def_old not in S_DEFINITIONS and s_def_old is not None:
raise ValueError('s_def_old parameter should be one of:', S_DEFINITIONS)
if s_def_old is None:
s_def_old = s_def
if s_def not in S_DEFINITIONS:
raise ValueError('s_def parameter should be one of:', S_DEFINITIONS)
# that's a heck of a one-liner!
return z2s(s2z(s, z0=z_old, s_def=s_def_old), z0=z_new, s_def=s_def)
def fix_param_shape(p: NumberLike):
"""
Attempt to broadcast p to satisfy.
np.shape(p) == (nfreqs, nports, nports)
Parameters
----------
p : number, array-like
p can be:
* a number (one frequency, one port)
* 1D array-like (many frequencies, one port)
* 2D array-like (one frequency, many ports)
* 3D array-like (many frequencies, many ports)
Returns
-------
p : array of shape == (nfreqs, nports, nports)
p with the right shape for a nport Network
"""
# Ensure input is numpy array
p = np.array(p, dtype=complex)
if len(p.shape) == 0:
# Scalar
return p.reshape(1, 1, 1)
if len(p.shape) == 1:
# One port with many frequencies
return p.reshape(p.shape[0], 1, 1)
if p.shape[-1] != p.shape[-2]:
raise ValueError('Input matrix must be square')
if len(p.shape) == 2:
# Many port with one frequency
return p.reshape(-1, p.shape[0], p.shape[0])
if len(p.shape) != 3:
raise ValueError(f'Input array has too many dimensions. Shape: {p.shape}')
return p
def fix_z0_shape(z0: NumberLike, nfreqs: int, nports: int) -> np.ndarray:
"""
Make a port impedance of correct shape for a given network's matrix.
This attempts to broadcast z0 to satisfy
np.shape(z0) == (nfreqs,nports)
Parameters
----------
z0 : number, array-like
z0 can be:
* a number (same at all ports and frequencies)
* an array-like of length == number ports.
* an array-like of length == number frequency points.
* the correct shape ==(nfreqs,nports)
nfreqs : int
number of frequency points
nports : int
number of ports
Returns
-------
z0 : array of shape ==(nfreqs,nports)
z0 with the right shape for a nport Network
Examples
--------
For a two-port network with 201 frequency points, possible uses may
be
>>> z0 = rf.fix_z0_shape(50 , 201,2)
>>> z0 = rf.fix_z0_shape([50,25] , 201,2)
>>> z0 = rf.fix_z0_shape(range(201) , 201,2)
"""
if np.shape(z0) == (nfreqs, nports):
# z0 is of correct shape. super duper.return it quick.
return z0.copy()
elif np.ndim(z0) == 0:
# z0 is a single number or np.array without dimensions.
return np.array(nfreqs * [nports * [z0]])
elif len(z0) == nports:
# assume z0 is a list of impedances for each port,
# but constant with frequency
return np.array(nfreqs * [z0])
elif len(z0) == nfreqs:
# assume z0 is a list of impedances for each frequency,
# but constant with respect to ports
return np.array(nports * [z0]).T
else:
raise IndexError('z0 is not an acceptable shape')
## cascading assistance functions
def inv(s: np.ndarray) -> np.ndarray:
"""
Calculate 'inverse' s-parameter matrix, used for de-embedding.
This is not literally the inverse of the s-parameter matrix.
Instead, it is defined such that the inverse of the s-matrix cascaded
with itself is a unity scattering transfer parameter (T) matrix.
.. math::
inv(s) = t2s({s2t(s)}^{-1})
where :math:`x^{-1}` is the matrix inverse. In words, this
is the inverse of the scattering transfer parameters matrix
transformed into a scattering parameters matrix.
Parameters
----------
s : :class:`numpy.ndarray` (shape fx2nx2n)
scattering parameter matrix.
Returns
-------
s' : :class:`numpy.ndarray`
inverse scattering parameter matrix.
See Also
--------
t2s : converts scattering transfer parameters to scattering parameters
s2t : converts scattering parameters to scattering transfer parameters
"""
# this idea is from lihan
t = s2t(s)
tinv = np.linalg.inv(t)
sinv = t2s(tinv)
#for f in range(len(i)):
# i[f, :, :] = np.linalg.inv(i[f, :, :]) # could also be written as
# # np.mat(i[f,:,:])**-1 -- Trey
return sinv
def flip(a: np.ndarray) -> np.ndarray:
"""
Invert the ports of a networks s-matrix, 'flipping' it over left and right.
In case the network is 2n-port and n > 1, 'second' numbering scheme is
assumed to be consistent with the ** cascade operator::
+--------+ +--------+
0-|0 n|-n 0-|n 0|-n
1-|1 n+1|-n+1 flip 1-|n+1 1|-n+1
... ... => ... ...
n-1-|n-1 2n-1|-2n-1 n-1-|2n-1 n-1|-2n-1
+--------+ +--------+
Parameters
----------
a : :class:`numpy.ndarray`
scattering parameter matrix. shape should be `2nx2n`, or
`fx2nx2n`
Returns
-------
c : :class:`numpy.ndarray`
flipped scattering parameter matrix
See Also
--------
renumber
"""
c = a.copy()
n2 = a.shape[-1]
m2 = a.shape[-2]
n = int(n2/2)
if (n2 == m2) and (n2 % 2 == 0):
old = list(range(0,2*n))
new = list(range(n,2*n)) + list(range(0,n))
if(len(a.shape) == 2):
c[new, :] = c[old, :] # renumber rows
c[:, new] = c[:, old] # renumber columns
else:
c[:, new, :] = c[:, old, :] # renumber rows
c[:, :, new] = c[:, :, old] # renumber columns
else:
raise IndexError('matrices should be 2nx2n, or kx2nx2n')
return c
## COMMON CHECKS (raise exceptions)
def check_frequency_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same frequency.
"""
if not assert_frequency_equal(ntwkA, ntwkB):
raise IndexError('Networks don\'t have matching frequency. See `Network.interpolate`')
def check_frequency_exist(ntwk) -> None:
"""
Check if a Network has a non-zero Frequency.
"""
if not assert_frequency_exist(ntwk):
raise ValueError('Network has no Frequency. Frequency points must be defined.')
def check_z0_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same port impedances.
"""
# note you should check frequency equal before you call this
if not assert_z0_equal(ntwkA, ntwkB):
raise ValueError('Networks don\'t have matching z0.')
def check_nports_equal(ntwkA: Network, ntwkB: Network) -> None:
"""
Check if two Networks have same number of ports.
"""
if not assert_nports_equal(ntwkA, ntwkB):
raise ValueError('Networks don\'t have matching number of ports.')
## TESTs (return [usually boolean] values)
def assert_frequency_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.frequency == ntwkB.frequency)
def assert_frequency_exist(ntwk: Network) -> bool:
"""
Test if the Network Frequency is defined.
Returns
-------
bool: boolean
"""
return bool(len(ntwk.frequency))
def assert_z0_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.z0 == ntwkB.z0).all()
def assert_z0_at_ports_equal(ntwkA: Network, k: int, ntwkB: Network, l: int) -> bool:
"""
"""
return (ntwkA.z0[:, k] == ntwkB.z0[:, l]).all()
def assert_nports_equal(ntwkA: Network, ntwkB: Network) -> bool:
"""
"""
return (ntwkA.number_of_ports == ntwkB.number_of_ports)
## Other
# don't belong here, but i needed them quickly
# this is needed for port impedance mismatches
def impedance_mismatch(z1: NumberLike, z2: NumberLike, s_def: SdefT = 'traveling') -> np.ndarray:
"""
Create a two-port s-matrix for a impedance mismatch.
Parameters
----------
z1 : number or array-like
complex impedance of port 1
z2 : number or array-like
complex impedance of port 2
s_def : str, optional. Default is 'traveling'.
Scattering parameter definition:
'power' for power-waves definition,
'pseudo' for pseudo-waves definition.
'traveling' corresponds to the initial implementation.
NB: results are the same for real-valued characteristic impedances.
Returns
-------
s : 2-port s-matrix for the impedance mismatch
References
----------
.. [#] R. B. Marks et D. F. Williams, A general waveguide circuit theory,
J. RES. NATL. INST. STAN., vol. 97, no. 5, p. 533, sept. 1992.
"""
from .tlineFunctions import zl_2_Gamma0
gamma = zl_2_Gamma0(z1, z2)
result = np.zeros(shape=(len(gamma), 2, 2), dtype='complex')
if s_def == 'traveling':
result[:, 0, 0] = gamma
result[:, 1, 1] = -gamma
result[:, 1, 0] = (1 + gamma) * np.sqrt(1.0 * z1 / z2)
result[:, 0, 1] = (1 - gamma) * np.sqrt(1.0 * z2 / z1)
elif s_def == 'pseudo':
n = np.abs(z2/z1) * np.sqrt(z1.real / z2.real)
result[:, 0, 0] = gamma
result[:, 1, 1] = -gamma
result[:, 1, 0] = 2 * z2 / (n * (z1 + z2))
result[:, 0, 1] = 2 * z1 * n / (z1 + z2)
elif s_def == 'power':
n = np.sqrt(z1.real / z2.real)
result[:, 0, 0] = (z2 - z1.conjugate()) / (z1 + z2)
result[:, 1, 1] = (z1 - z2.conjugate()) / (z1 + z2)
result[:, 1, 0] = (2 * z1.real) / (n * (z1 + z2))
result[:, 0, 1] = (2 * z2.real) * n / (z1 + z2)
else:
raise ValueError(f'Unsupported s_def: {s_def}')
return result
def two_port_reflect(ntwk1: Network, ntwk2: Network | None = None, name : str | None = None) -> Network:
"""
Generate a two-port reflective two-port, from two one-ports.
Parameters
----------
ntwk1 : one-port Network object
network seen from port 1
ntwk2 : one-port Network object, or None
network seen from port 2. if None then will use ntwk1.
name: Name for the combined network. If None, then construct the name
from the names of the input networks
Returns
-------
result : Network object
two-port reflective network
Note
----
The resultant Network is copied from `ntwk1`, so its various
properties(name, frequency, etc.) are inherited from that Network.
Examples
--------
>>> short,open = rf.Network('short.s1p', rf.Network('open.s1p')
>>> rf.two_port_reflect(short,open)
"""
result = ntwk1.copy()
if ntwk2 is None:
ntwk2 = ntwk1
s11 = ntwk1.s[:, 0, 0]
s22 = ntwk2.s[:, 0, 0]
s21 = np.zeros(ntwk1.frequency.npoints, dtype=complex)
result.s = np.array( \
[[s11, s21], \
[s21, s22]]). \
transpose().reshape(-1, 2, 2)
result.z0 = np.hstack([ntwk1.z0, ntwk2.z0])
if name is None:
try:
result.name = ntwk1.name + '-' + ntwk2.name
except(TypeError):
pass
else:
result.name = name
return result
def s2s_active(s: np.ndarray, a:np.ndarray) -> np.ndarray:
r"""
Return active s-parameters for a defined wave excitation a.
The active s-parameter at a port is the reflection coefficients
when other ports are excited. It is an important quantity for active
phased array antennas.
Active s-parameters are defined by [#]_:
.. math::
\mathrm{active}(s)_{m} = \sum_{i=1}^N\left( s_{mi} a_i \right) / a_m
where :math:`s` are the scattering parameters and :math:`N` the number of ports
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
a : complex array of shape (n_ports)
forward wave complex amplitude (pseudowave formulation [#]_)
Returns
-------
s_act : complex array of shape (n_freqs, n_ports)
active S-parameters for the excitation a
See Also
--------
s2z_active : active Z-parameters
s2y_active : active Y-parameters
s2vswr_active : active VSWR
References
----------
.. [#] D. M. Pozar, IEEE Trans. Antennas Propag. 42, 1176 (1994).
.. [#] D. Williams, IEEE Microw. Mag. 14, 38 (2013).
"""
a = np.asarray(a, dtype=complex)
a[a == 0] = 1e-12 # solve numerical singularity
s_act = np.einsum('fmi,i,m->fm', s, a, np.reciprocal(a))
return s_act # shape : (n_freqs, n_ports)
def s2z_active(s: np.ndarray, z0: NumberLike, a: np.ndarray) -> np.ndarray:
r"""
Return the active Z-parameters for a defined wave excitation a.
The active Z-parameters are defined by:
.. math::
\mathrm{active}(z)_{m} = z_{0,m} \frac{1 + \mathrm{active}(s)_m}{1 - \mathrm{active}(s)_m}
where :math:`z_{0,m}` is the characteristic impedance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
z0 : complex array-like or number
port impedances.
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
z_act : complex array of shape (nfreqs, nports)
active Z-parameters for the excitation a
See Also
--------
s2s_active : active S-parameters
s2y_active : active Y-parameters
s2vswr_active : active VSWR
"""
# TODO : vectorize the for loop
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
s_act = s2s_active(s, a)
z_act = np.einsum('fp,fp,fp->fp', z0, 1 + s_act, np.reciprocal(1 - s_act))
return z_act
def s2y_active(s: np.ndarray, z0: NumberLike, a: np.ndarray) -> np.ndarray:
r"""
Return the active Y-parameters for a defined wave excitation a.
The active Y-parameters are defined by:
.. math::
\mathrm{active}(y)_{m} = y_{0,m} \frac{1 - \mathrm{active}(s)_m}{1 + \mathrm{active}(s)_m}
where :math:`y_{0,m}` is the characteristic admittance and
:math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
z0 : complex array-like or number
port impedances.
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
y_act : complex array of shape (nfreqs, nports)
active Y-parameters for the excitation a
See Also
--------
s2s_active : active S-parameters
s2z_active : active Z-parameters
s2vswr_active : active VSWR
"""
nfreqs, nports, nports = s.shape
z0 = fix_z0_shape(z0, nfreqs, nports)
s_act = s2s_active(s, a)
y_act = np.einsum('fp,fp,fp->fp', np.reciprocal(z0), 1 - s_act, np.reciprocal(1 + s_act))
return y_act
def s2vswr_active(s: np.ndarray, a: np.ndarray) -> np.ndarray:
r"""
Return the active VSWR for a defined wave excitation a..
The active VSWR is defined by :
.. math::
\mathrm{active}(vswr)_{m} = \frac{1 + |\mathrm{active}(s)_m|}{1 - |\mathrm{active}(s)_m|}
where :math:`\mathrm{active}(s)_m` the active S-parameter of port :math:`m`.
Parameters
----------
s : complex array
scattering parameters (nfreqs, nports, nports)
a : complex array of shape (n_ports)
forward wave complex amplitude
Returns
-------
vswr_act : complex array of shape (nfreqs, nports)
active VSWR for the excitation a
See Also
--------
s2s_active : active S-parameters
s2z_active : active Z-parameters
s2y_active : active Y-parameters
"""
s_act = s2s_active(s, a)
vswr_act = np.einsum('fp,fp->fp', (1 + np.abs(s_act)), np.reciprocal(1 - np.abs(s_act)))
return vswr_act
def twoport_to_nport(ntwk: Network, port1: int, port2: int, nports: int, **kwargs):
r"""
Add ports to two-port. S-parameters of added ports are all zeros.
Parameters
----------
ntwk : Two-port Network object
port1: int
First port of the two-port in the resulting N-port.
port2: int
Second port of the two-port in the resulting N-port.
nports: int
Number of ports in the N-port network.
\*\*kwargs:
Passed to :func:`Network.__init__` for resultant network.
Returns
-------
nport: N-port Network object
"""
fpoints = len(ntwk.frequency)
nport = Network(frequency=ntwk.frequency,
s=np.zeros(shape=(fpoints, nports, nports)),
name=ntwk.name,
**kwargs)
nport.s[:,port1,port1] = ntwk.s[:,0,0]
nport.s[:,port2,port1] = ntwk.s[:,1,0]
nport.s[:,port1,port2] = ntwk.s[:,0,1]
nport.s[:,port2,port2] = ntwk.s[:,1,1]
nport.z0[:,port1] = ntwk.z0[:,0]
nport.z0[:,port2] = ntwk.z0[:,1]
return nport
|