File: networkSet.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (1585 lines) | stat: -rw-r--r-- 50,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
"""
.. module:: skrf.networkSet

========================================
networkSet (:mod:`skrf.networkSet`)
========================================

Provides a class representing an un-ordered set of n-port microwave networks.


Frequently one needs to make calculations, such as mean or standard
deviation, on an entire set of n-port networks. To facilitate these
calculations the :class:`NetworkSet` class provides convenient
ways to make such calculations.

Another usage is to interpolate a set of Networks which depend of
an parameter (like a knob, or a geometrical parameter).

The results are returned in :class:`~skrf.network.Network` objects,
so they can be plotted and saved in the same way one would do with a
:class:`~skrf.network.Network`.

The functionality in this module is provided as methods and
properties of the :class:`NetworkSet` Class.


NetworkSet Class
================

.. autosummary::
   :toctree: generated/

   NetworkSet

NetworkSet Utilities
====================

.. autosummary::
   :toctree: generated/

   func_on_networks
   getset


"""
from __future__ import annotations

import zipfile
from collections.abc import Mapping
from io import BytesIO
from numbers import Number
from pathlib import Path
from typing import Any, TextIO

import numpy as np
import pandas as pd
from scipy.interpolate import interp1d

from . import mathFunctions as mf
from .constants import NumberLike, PrimaryPropertiesT
from .network import COMPONENT_FUNC_DICT, PRIMARY_PROPERTIES, Frequency, Network
from .util import copy_doc, now_string_2_dt

try:
    from numpy.typing import ArrayLike
except ImportError:
    ArrayLike = Any

from . import plotting as skrf_plt


class NetworkSet:
    """
    A set of Networks.

    This class allows functions on sets of Networks, such as mean or
    standard deviation, to be calculated conveniently. The results are
    returned in :class:`~skrf.network.Network` objects, so that they may be
    plotted and saved in like :class:`~skrf.network.Network` objects.

    This class also provides methods which can be used to plot uncertainty
    bounds for a set of :class:`~skrf.network.Network`.

    The names of the :class:`NetworkSet` properties are generated
    dynamically upon initialization, and thus documentation for
    individual properties and methods is not available. However, the
    properties do follow the convention::

            >>> my_network_set.function_name_network_property_name

    For example, the complex average (mean)
    :class:`~skrf.network.Network` for a
    :class:`NetworkSet` is::

            >>> my_network_set.mean_s

    This accesses the property 's', for each element in the
    set, and **then** calculates the 'mean' of the resultant set. The
    order of operations is important.

    Results are returned as :class:`~skrf.network.Network` objects,
    so they may be plotted or saved in the same way as for
    :class:`~skrf.network.Network` objects::

            >>> my_network_set.mean_s.plot_s_mag()
            >>> my_network_set.mean_s.write_touchstone('mean_response')

    If you are calculating functions that return scalar variables, then
    the result is accessible through the Network property .s_re. For
    example::

            >>> std_s_deg = my_network_set.std_s_deg

    This result would be plotted by::

            >>> std_s_deg.plot_s_re()


    The operators, properties, and methods of NetworkSet object are
    dynamically generated by private methods

     * :func:`~NetworkSet.__add_a_operator`
     * :func:`~NetworkSet.__add_a_func_on_property`
     * :func:`~NetworkSet.__add_a_element_wise_method`
     * :func:`~NetworkSet.__add_a_plot_uncertainty`

    thus, documentation on the individual methods and properties are
    not available.


    """

    def __init__(self, ntwk_set: list | dict = None, name: str = None):
        """
        Initialize for NetworkSet.

        Parameters
        ----------
        ntwk_set : list of :class:`~skrf.network.Network` objects
                the set of :class:`~skrf.network.Network` objects
        name : string
                the name of the NetworkSet, given to the Networks returned
                from properties of this class.
        """
        if ntwk_set is None:
            ntwk_set = []
        if not isinstance(ntwk_set, (list, dict)):
            raise ValueError('NetworkSet requires a list as argument')

        # dict is authorized for convenience
        # but if a dict is passed instead of a list -> list
        if isinstance(ntwk_set, dict):
            ntwk_set = list(ntwk_set.values())

        # did they pass a list of Networks?
        if not all([isinstance(ntwk, Network) for ntwk in ntwk_set]):
            raise(TypeError('input must be list of Network types'))

        # do all Networks have the same # ports?
        if len (set([ntwk.number_of_ports for ntwk in ntwk_set])) > 1:
            raise(ValueError('All elements in list of Networks must have same number of ports'))

        # is all frequency information the same?
        if not np.all([(ntwk_set[0].frequency == ntwk.frequency) for ntwk in ntwk_set]):
            raise(ValueError('All elements in list of Networks must have same frequency information'))

        ## initialization
        # we are good to go
        self.ntwk_set: list[Network] = ntwk_set
        self.name = name

        # extract the dimensions of the set
        try:
            self.dims = self.ntwk_set[0].params.keys()
        except (AttributeError, IndexError):  # .params is None
            self.dims = dict()

        # extract the coordinates of the set
        try:
            self.coords = {p: [] for p in self.dims}

            for k in self.ntwk_set:
                for p in self.dims:
                    self.coords[p].append(k.params[p])

            # keep only unique terms
            for p in self.coords.keys():
                self.coords[p] = list(set(self.coords[p]))
        except TypeError:  # .params is None
            self.coords = None

        # create list of network properties, which we use to dynamically
        # create a statistical properties of this set
        network_property_list = [k+'_'+l \
            for k in PRIMARY_PROPERTIES \
            for l in COMPONENT_FUNC_DICT.keys()] + \
            ['passivity','s']

        # dynamically generate properties. this is slick.
        max, min = np.max, np.min
        max.__name__ = 'max'
        min.__name__ = 'min'
        for network_property_name in network_property_list:
            for func in [np.mean, np.std, max, min]:
                self.__add_a_func_on_property(func, network_property_name)

            if 'db' not in network_property_name:# != 's_db' and network_property_name != 's':
                # db uncertainty requires a special function call see
                # plot_uncertainty_bounds_s_db
                self.__add_a_plot_uncertainty(network_property_name)
                self.__add_a_plot_minmax(network_property_name)

            self.__add_a_element_wise_method('plot_'+network_property_name)
            self.__add_a_element_wise_method('plot_s_db')
            self.__add_a_element_wise_method('plot_s_db_time')

        for network_method_name in \
                ['write_touchstone','interpolate','plot_s_smith']:
            self.__add_a_element_wise_method(network_method_name)

        for operator_name in \
                ['__pow__','__floordiv__','__mul__','__truediv__','__add__','__sub__']:
            self.__add_a_operator(operator_name)

    @classmethod
    def from_zip(cls, zip_file_name: str | Path, sort_filenames: bool = True, *args, **kwargs):
        r"""
        Create a NetworkSet from a zipfile of touchstones.

        Parameters
        ----------
        zip_file_name : string or Path
            name of zipfile
        sort_filenames: Boolean
            sort the filenames in the zip file before constructing the
            NetworkSet
        \*args, \*\*kwargs : arguments
            passed to NetworkSet constructor

        Examples
        --------
        >>> import skrf as rf
        >>> my_set = rf.NetworkSet.from_zip('myzip.zip')

        """
        z = zipfile.ZipFile(zip_file_name)
        filename_list = z.namelist()

        ntwk_list = []

        if sort_filenames:
            filename_list.sort()

        for filename in filename_list:
            # try/except block in case not all files are touchstones
            try:  # Ascii files (Touchstone, etc)
                n = Network.zipped_touchstone(filename, z)
                ntwk_list.append(n)
                continue
            except Exception:
                pass
            try:  # Binary files (pickled Network)
                fileobj = BytesIO(z.open(filename).read())
                fileobj.name = filename
                n = Network(fileobj)
                ntwk_list.append(n)
                continue
            except Exception:
                pass

        return cls(ntwk_list)

    @classmethod
    def from_dir(cls, dir: str | Path = '.', *args, **kwargs):
        r"""
        Create a NetworkSet from a directory containing Networks.

        This just calls ::

            rf.NetworkSet(rf.read_all_networks(dir), *args, **kwargs)

        Parameters
        ----------
        dir : str or Path
            directory containing Network files.

        \*args, \*\*kwargs :
            passed to NetworkSet constructor

        Examples
        --------
        >>> my_set = rf.NetworkSet.from_dir('./data/')

        """
        from .io.general import read_all_networks
        return cls(read_all_networks(dir), *args, **kwargs)

    @classmethod
    def from_s_dict(cls, d: dict, frequency: Frequency, *args, **kwargs):
        r"""
        Create a NetworkSet from a dictionary of s-parameters

        The resultant elements of the NetworkSet are named by the keys of
        the dictionary.

        Parameters
        -------------
        d : dict
            dictionary of s-parameters data. values of this should be
            :class:`numpy.ndarray` assignable to :attr:`skrf.network.Network.s`
        frequency: :class:`~skrf.frequency.Frequency` object
            frequency assigned to each network

        \*args, \*\*kwargs :
            passed to Network.__init__ for each key/value pair of d

        Returns
        ----------
        ns : NetworkSet

        See Also
        ----------
        NetworkSet.to_s_dict
        """
        return cls([Network(s=d[k], frequency=frequency, name=k,
                            **kwargs)  for k in d])

    @classmethod
    def from_mdif(cls, file: str | Path | TextIO) -> NetworkSet:
        """
        Create a NetworkSet from a MDIF file.

        Parameters
        ----------
        file : str, Path, file-object
            MDIF file to load

        Returns
        -------
        ns : :class: `~skrf.networkSet.NetworkSet`

        See Also
        --------
        Mdif : MDIF Object
        write_mdif : Convert a NetworkSet to a Generalized MDIF file.

        """
        from .io import Mdif
        return Mdif(file).to_networkset()

    @classmethod
    def from_citi(cls, file: str | Path | TextIO) -> NetworkSet:
        """
        Create a NetworkSet from a CITI file.

        Parameters
        ----------
        file : str, Path, or file-object
            CITI file to load

        Returns
        -------
        ns : :class: `~skrf.networkSet.NetworkSet`

        See Also
        --------
        Citi

        """
        from .io import Citi
        return Citi(file).to_networkset()

    def __add_a_operator(self, operator_name):
        """
        Add an operator method to the NetworkSet.

        this is made to
        take either a Network or a NetworkSet. if a Network is passed
        to the operator, each element of the set will operate on the
        Network. If a NetworkSet is passed to the operator, and is the
        same length as self. then it will operate element-to-element
        like a dot-product.
        """
        def operator_func(self, other):
            if isinstance(other, NetworkSet):
                if len(other) != len(self):
                    raise(ValueError('Network sets must be of same length to be cascaded'))
                return NetworkSet([
                        getattr(self.ntwk_set[k], operator_name)(other.ntwk_set[k]) for k in range(len(self))
                    ])

            elif isinstance(other, Network):
                return NetworkSet([getattr(ntwk, operator_name)(other) for ntwk in self.ntwk_set])

            else:
                raise(TypeError('NetworkSet operators operate on either Network, or NetworkSet types'))
        setattr(self.__class__,operator_name,operator_func)


    def __str__(self):
        """
        """
        return f'{len(self.ntwk_set)}-Networks NetworkSet: '+self.ntwk_set.__str__()

    def __repr__(self):
        return self.__str__()

    def __getitem__(self, key):
        """
        Return an element of the network set.
        """
        if isinstance(key, str):
            # if they pass a string then slice each network in this set
            return NetworkSet([k[key] for k in self.ntwk_set],
                              name = self.name)
        else:
            return self.ntwk_set[key]

    def __len__(self) -> int:
        """
        Return the number of Networks in a NetworkSet.

        Return
        ------
        len: int
            Number of Networks in a NetworkSet

        """
        return len(self.ntwk_set)

    def __eq__(self, other: NetworkSet) -> bool:
        """
        Compare the NetworkSet with another NetworkSet.

        Two NetworkSets are considered equal of their Networks are all equals
        (in the same order)

        Returns
        -------
        is_equal: bool

        """
        # of course they should have equal lengths
        if len(self) != len(other):
            return False
        # compare all networks in the order of the list
        # return False as soon as 2 networks are different
        for (ntwk, ntwk_other) in zip(self.ntwk_set, other):
            if ntwk != ntwk_other:
                return False

        return True


    def __add_a_element_wise_method(self, network_method_name: str):
        def func(self,  *args, **kwargs):
            return self.element_wise_method(network_method_name, *args, **kwargs)
        setattr(self.__class__,network_method_name,func)


    def __add_a_func_on_property(self, func, network_property_name: str):
        """
        Dynamically add a property to this class (NetworkSet).

        this is mostly used internally to generate all of the classes
        properties.

        Parameters
        ----------
        func: a function to be applied to the network_property
                across the first axis of the property's output
        network_property_name: str
            a property of the Network class,
            which must have a matrix output of shape (f, n, n)

        example
        -------
        >>> my_ntwk_set.add_a_func_on_property(mean, 's')


        """
        def fget(self):
            return fon(self.ntwk_set, func, network_property_name, name=self.name)
        setattr(self.__class__,func.__name__+'_'+network_property_name,\
                property(fget))

    def __add_a_plot_uncertainty(self, network_property_name: str):
        """
        Add a plot uncertainty to a Network property.

        Parameter
        ---------
        network_property_name: str
            A property of the Network class,
            which must have a matrix output of shape (f, n, n)

        Parameter
        ---------
        >>> my_ntwk_set.__add_a_plot_uncertainty('s')


        """
        def plot_func(self,*args, **kwargs):
            self.plot_uncertainty_bounds_component(network_property_name, *args,**kwargs)

        setattr(self.__class__,'plot_uncertainty_bounds_'+\
                network_property_name,plot_func)

        setattr(self.__class__,'plot_ub_'+\
                network_property_name,plot_func)

    def __add_a_plot_minmax(self, network_property_name: str):
        """

        Parameter
        ---------
        network_property_name: str
            A property of the Network class,
            which must have a matrix output of shape (f, n, n)

        Example
        -------
        >>> my_ntwk_set.__add_a_plot_minmax('s')


        """
        def plot_func(self,*args, **kwargs):
            self.plot_minmax_bounds_component(network_property_name, *args,**kwargs)

        setattr(self.__class__,'plot_minmax_bounds_'+\
                network_property_name,plot_func)

        setattr(self.__class__,'plot_mm_'+\
                network_property_name,plot_func)

    def to_dict(self) -> dict:
        """
        Return a dictionary representation of the NetworkSet.

        Return
        ------
        d : dict
            The returned dictionary has the Network names for keys,
            and the Networks as values.

        """
        return {k.name: k for k in self.ntwk_set}

    def to_s_dict(self):
        """
        Converts a NetworkSet to a dictionary of s-parameters.

        The resultant keys of the dictionary are the names of the Networks
        in NetworkSet

        Returns
        -------
        s_dict : dictionary
            contains s-parameters in the form of complex numpy arrays

        See Also
        --------
        NetworkSet.from_s_dict

        """
        d = self.to_dict()
        for k in d:
            d[k] = d[k].s
        return d

    def element_wise_method(self, network_method_name: str, *args, **kwargs) -> NetworkSet:
        """
        Call a given method of each element and returns the result as
        a new NetworkSet if the output is a Network.

        Parameter
        ---------
        network_property_name: str
            A property of the Network class,
            which must have a matrix output of shape (f, n, n)

        Return
        ------
        ns: :class: `~skrf.networkSet.NetworkSet`

        """
        output = [getattr(ntwk, network_method_name)(*args, **kwargs) for ntwk in self.ntwk_set]
        if isinstance(output[0],Network):
            return NetworkSet(output)
        else:
            return output

    def copy(self) -> NetworkSet:
        """
        Copy each network of the network set.

        Return
        ------
        ns: :class: `~skrf.networkSet.NetworkSet`

        """
        return NetworkSet([k.copy() for k in self.ntwk_set])

    def sort(self, key=lambda x: x.name, inplace: bool = True, **kwargs) -> None | NetworkSet:
        r"""
        Sort this network set.

        Parameters
        ----------
        key:

        inplace: bool
            Sort the NetworkSet object directly if True,
            return the sorted NetworkSet if False. Default is True.

        \*\*kwargs : dict
            keyword args passed to builtin sorted acting on self.ntwk_set

        Return
        ------
        ns: None if inplace=True, NetworkSet if False

        Examples
        --------
        >>> ns = rf.NetworkSet.from_dir('mydir')
        >>> ns.sort()

        Sort by other property:

        >>> ns.sort(key= lambda x: x.voltage)

        Returns a new NetworkSet:

        >>> sorted_ns = ns.sort(inplace=False)


        """
        sorted_ns = sorted(self.ntwk_set, key = key, **kwargs)
        if inplace:
            self.ntwk_set = sorted_ns
        else:
            return sorted_ns

    def rand(self, n: int = 1, rng: None | np.random.Generator = None):
        """
        Return `n` random samples from this NetworkSet.

        Parameters
        ----------
        n : int
            number of samples to return (default is 1)
        rng : :class:`numpy.random.Generator` or None
            override the global :mod:`numpy` random number generator,
            useful for multi-threaded programs since
            :func:`skrf.mathFunctions.set_rand_rng` is not thread-safe.

        """
        if rng is None:
            rng = mf.rand_rng()
        idx = rng.randint(0,len(self), n)
        out = [self.ntwk_set[k] for k in idx]

        if n ==1:
            return out[0]
        else:
            return out

    def filter(self, s: str) -> NetworkSet:
        """
        Filter NetworkSet based on a string in `Network.name`.

        Notes
        -----
        This is just

        `NetworkSet([k for k in self if s in k.name])`

        Parameters
        ----------
        s: str
            string contained in network elements to be filtered

        Returns
        --------
        ns : :class: `skrf.NetworkSet`


        Examples
        -----------
        >>> ns.filter('monday')

        """
        return NetworkSet([k for k in self if s in k.name])

    def scalar_mat(self, param: str = 's') -> np.ndarray:
        """
        Return a scalar ndarray representing `param` data vs freq and element idx.

        Output is a 3d array with axes  (freq, ns_index, port/ri).
        ports is a flattened re/im components of port index (`len = 2*nports**2`).

        Parameter
        ---------
        param : str
            name of the parameter to export. Default is 's'.

        Return
        ------
        x : :class: np.ndarray

        """
        ntwk = self[0]
        nfreq = len(ntwk)
        # x will have the axes (frequency, observations, ports)
        x = np.array([[mf.flatten_c_mat(getattr(k, param)[f]) \
            for k in self] for f in range(nfreq)])

        return x

    def cov(self, **kw) -> np.ndarray:
        """
        Covariance matrix.

        shape of output  will be  (nfreq, 2*nports**2, 2*nports**2)
        """
        smat=self.scalar_mat(**kw)
        return np.array([np.cov(k.T) for k in smat])

    @property
    def mean_s_db(self) -> Network:
        """
        Return Network of mean magnitude in dB.

        Return
        ------
        ntwk : :class: `~skrf.network.Network`
            Network of the mean magnitude in dB

        Note
        ----
        The mean is taken on the magnitude before converted to db, so

        `magnitude_2_db(mean(s_mag))`

        which is NOT the same as

        `mean(s_db)`

        """
        ntwk = self.mean_s_mag
        ntwk.s = ntwk.s_db
        return ntwk

    @property
    def std_s_db(self) -> Network:
        """
        Return the Network of the standard deviation magnitude in dB.

        Return
        ------
        ntwk : :class: `~skrf.network.Network`
            Network of the mean magnitude in dB

        Note
        ----
        The standard deviation is taken on the magnitude before converted to db, so

        `magnitude_2_db(std(s_mag))`

        which is NOT the same as

        `std(s_db)`

        """
        ntwk= self.std_s_mag
        ntwk.s = ntwk.s_db
        return ntwk

    @property
    def inv(self) -> NetworkSet:
        """
        Return the NetworkSet of inverted Networks (Network.inv()).

        Returns
        -------
        ntwkSet : :class: `~skrf.networkSet.NetworkSet`
            NetworkSet of inverted Networks

        """
        return NetworkSet( [ntwk.inv for ntwk in self.ntwk_set])

    def add_polar_noise(self, ntwk: Network) -> Network:
        """

        Parameters
        ----------
        ntwk : :class: `~skrf.network.Network`


        Returns
        -------
        ntwk : :class: `~skrf.network.Network`


        """
        from numpy import frompyfunc
        from scipy import stats

        def gimme_norm(x):
            return stats.norm(loc=0, scale=x).rvs(1)[0]
        ugimme_norm = frompyfunc(gimme_norm,1,1)

        s_deg_rv = np.array(map(ugimme_norm, self.std_s_deg.s_re), dtype=float)
        s_mag_rv = np.array(map(ugimme_norm, self.std_s_mag.s_re), dtype=float)

        mag = ntwk.s_mag + s_mag_rv
        deg = ntwk.s_deg + s_deg_rv
        ntwk.s = mag * np.exp(1j*np.pi/180*deg)
        return ntwk

    def set_wise_function(self, func, a_property: str, *args, **kwargs):
        """
        Calls a function on a specific property of the Networks in this NetworkSet.

        Parameters
        ----------
        func  : callable

        a_property : str


        Example
        -------
        >>> my_ntwk_set.set_wise_func(mean,'s')

        """
        return fon(self.ntwk_set, func, a_property, *args, **kwargs)

    def uncertainty_ntwk_triplet(self, attribute: PrimaryPropertiesT, n_deviations: int = 3) -> tuple(
        Network, Network, Network
    ):
        """
        Return a 3-tuple of Network objects which contain the
        mean, upper_bound, and lower_bound for the given Network
        attribute.

        Used to save and plot uncertainty information data.

        Note that providing 's' and 's_mag' as attributes will provide different results.
        For those who want to directly find uncertainty on dB performance, use 's_mag'.

        Parameters
        ----------
        attribute : str
            Attribute to operate on.
        n_deviations : int, optional
            Number of standard deviation. The default is 3.

        Returns
        -------
        ntwk_mean : :class: `~skrf.network.Network`
            Network of the averaged attribute
        lower_bound : :class: `~skrf.network.Network`
            Network of the lower bound of N*sigma deviation.
        upper_bound : :class: `~skrf.network.Network`
            Network of the upper bound of N*sigma deviation.

        Example
        -------
        >>> (ntwk_mean, ntwk_lb, ntwk_ub) = my_ntwk_set.uncertainty_ntwk_triplet('s')
        >>> (ntwk_mean, ntwk_lb, ntwk_ub) = my_ntwk_set.uncertainty_ntwk_triplet('s_mag')

        """
        ntwk_mean = getattr(self, 'mean_'+attribute)
        ntwk_std = getattr(self, 'std_'+attribute)
        ntwk_std.s = n_deviations * ntwk_std.s

        upper_bound = (ntwk_mean + ntwk_std)
        lower_bound = (ntwk_mean - ntwk_std)

        return (ntwk_mean, lower_bound, upper_bound)

    def datetime_index(self) -> list:
        """
        Create a datetime index from networks names.

        this is just:

        `[rf.now_string_2_dt(k.name ) for k in self]`


        """
        return [now_string_2_dt(k.name ) for k in self]


    # io
    def write(self, file=None,  *args, **kwargs):
        r"""
        Write the NetworkSet to disk using :func:`~skrf.io.general.write`


        Parameters
        ----------
        file : str or file-object
            filename or a file-object. If left as None then the
            filename will be set to Calibration.name, if its not None.
            If both are None, ValueError is raised.
        \*args, \*\*kwargs : arguments and keyword arguments
            passed through to :func:`~skrf.io.general.write`

        Notes
        -----
        If the self.name is not None and file is  can left as None
        and the resultant file will have the `.ns` extension appended
        to the filename.

        Examples
        ---------
        >>> ns.name = 'my_ns'
        >>> ns.write()

        See Also
        ---------
        skrf.io.general.write
        skrf.io.general.read

        """
        # this import is delayed until here because of a circular dependency
        from .io.general import write

        if file is None:
            if self.name is None:
                 raise (ValueError('No filename given. You must provide a filename, or set the name attribute'))
            file = self.name

        write(file, self, *args, **kwargs)


    def write_spreadsheet(self, *args, **kwargs):
        """
        Write contents of network to a spreadsheet, for your boss to use.

        Example
        -------
        >>> ns.write_spreadsheet()  # the ns.name attribute must exist
        >>> ns.write_spreadsheet(file_name='testing.xlsx')

        See Also
        ---------
        skrf.io.general.network_2_spreadsheet

        """
        from .io.general import networkset_2_spreadsheet
        networkset_2_spreadsheet(self, *args, **kwargs)

    def write_mdif(self,
                   filename: str,
                   values: dict | None = None,
                   data_types: dict | None = None,
                   comments: list[str] | None = None,
                   **kwargs):
        """Convert a scikit-rf NetworkSet object to a Generalized MDIF file.

        Parameters
        ----------
        filename : string
            Output MDIF file name.
        values : dictionary or None. Default is None.
            The keys of the dictionary are MDIF variables and its values are
            a list of the parameter values.
            If None, then the values will be set to the NetworkSet names
            and the datatypes will be set to "string".
        data_types: dictionary or None. Default is None.
            The keys are MDIF variables and the value are datatypes
            specified by the following strings: "int", "double", and "string"
        comments: list of strings
            Comments to add to output_file.
            Each list items is a separate comment line
        **kwargs: dictionary with extra arguments to pass through to the
            underlying Mdif.write and Network.write_touchstone methods

        See Also
        --------
        from_mdif : Create a NetworkSet from a MDIF file.
        params_values : parameters values
        params_types : parameters types

        """
        from .io import Mdif
        if comments is None:
            comments = []
        Mdif.write(ns=self, filename=filename, values=values,
                   data_types=data_types, comments=comments, **kwargs)

    def ntwk_attr_2_df(self, attr='s_db', m=0, n=0, *args, **kwargs):
        """
        Converts an attributes of the Networks within a NetworkSet to a Pandas DataFrame.

        Examples
        --------
        >>> df = ns.ntwk_attr_2_df('s_db', m=1, n=0)
        >>> df.to_excel('output.xls')  # see Pandas docs for more info

        """
        from pandas import DataFrame, Index, Series
        index = Index(
            self[0].frequency.f_scaled,
            name=f'Freq({self[0].frequency.unit})'
            )
        df = DataFrame(
            {f'{k.name}':
                Series(getattr(k, attr)[:,m,n],index=index)
                for k in self},
            index = index,
            )
        return df

    def interpolate_from_network(self, ntw_param: ArrayLike, x: float, interp_kind: str = 'linear'):
        """
        Interpolate a Network from a NetworkSet, as a multi-file N-port network.

        Assumes that the NetworkSet contains N-port networks
        with same number of ports N and same number of frequency points.

        These networks differ from an given array parameter `interp_param`,
        which is used to interpolate the returned Network. Length of `interp_param`
        should be equal to the length of the NetworkSet.

        Parameters
        ----------
        ntw_param : (N,) array_like
            A 1-D array of real values. The length of ntw_param must be equal
            to the length of the NetworkSet
        x : real
            Point to evaluate the interpolated network at
        interp_kind: str
            Specifies the kind of interpolation as a string: 'linear', 'nearest', 'zero', 'slinear', 'quadratic',
            'cubic'. See :class:`scipy.interpolate.interp1d` for detailed description.
            Default is 'linear'.

        Returns
        -------
        ntw : class:`~skrf.network.Network`
            Network interpolated at x

        Example
        -------
        Assuming that `ns` is a NetworkSet containing 3 Networks (length=3) :

        >>> param_x = [1, 2, 3]  # a parameter associated to each Network
        >>> x0 = 1.5  # parameter value to interpolate for
        >>> interp_ntwk = ns.interpolate_from_network(param_x, x0)


        """
        ntw = self[0].copy()
        # Interpolating the scattering parameters
        s = np.array([self[idx].s for idx in range(len(self))])
        f = interp1d(ntw_param, s, axis=0, kind=interp_kind)
        ntw.s = f(x)

        return ntw

    def interpolate_frequency(self, freq_or_n: Frequency | NumberLike, basis: str = 's',
                    coords: str = 'cart', f_kwargs: dict = None, **kwargs) -> NetworkSet:
        """Interpolates each network in the set by frequency by calling :meth:`Network.interpolate`.

        Parameters
        ----------
        freq_or_n : :class:`~skrf.frequency.Frequency` or int or list-like
            The new frequency over which to interpolate. this arg may be
            one of the following:

            * a new :class:`~skrf.frequency.Frequency` object

            * an int: the current frequency span is resampled linearly.

            * a list-like: create a new frequency using :meth:`~skrf.frequency.Frequency.from_f`

        basis : ['s','z','y','a'], etc
            The network parameter to interpolate
        coords : string
            Coordinate system to use for interpolation: 'cart' or 'polar':
            'cart' is cartesian is Re/Im. 'polar' is unwrapped phase/mag
        f_kwargs : dict
            Key word arguments that are passed to the new :class:`Frequency` object
        **kwargs : keyword arguments
            passed to :func:`scipy.interpolate.interp1d` initializer.
            `kind` controls interpolation type.

            `kind` = `rational` uses interpolation by rational polynomials.

            `d` kwarg controls the degree of rational polynomials
            when `kind`=`rational`. Defaults to 4.

        Returns
        -------
        NetworkSet : :class:`NetworkSet`
            New NetworkSet with interpolated frequencies
        """

        return NetworkSet([ntwk.interpolate(freq_or_n, basis, coords, f_kwargs, **kwargs) for ntwk in self.ntwk_set])

    def has_params(self) -> bool:
        """
        Check is all Networks in the NetworkSet have a similar params dictionary.

        Returns
        -------
        bool
            True is all Networks have a .params dictionary (of same size),
            False otherwise

        """
        # does all networks have a params property?
        if not all(hasattr(ntwk, 'params') for ntwk in self.ntwk_set):
            return False

        # are all params property been set?
        if any(ntwk.params is None for ntwk in self.ntwk_set):
            return False

        # are they all of the same size?
        params_len = len(self.ntwk_set[0].params)
        if not all(len(ntwk.params) == params_len for ntwk in self.ntwk_set):
            return False

        # are all the dict keys the same?
        params_keys = self.ntwk_set[0].params.keys()
        if not all(ntwk.params.keys() == params_keys for ntwk in self.ntwk_set):
            return False

        # then we are all good
        return True

    @property
    def params(self) -> list:
        """
        Return the list of parameter names stored in the Network of the NetworkSet.

        Similar to the `dims` property, except it returns a list instead of a view.

        Returns
        -------
        list: list
            list of the parameter names if any. Empty list if no parameter found.

        """
        return list(self.dims)

    @property
    def params_values(self) -> dict | None:
        """
        Return a dictionary containing all parameters and their values.

        Returns
        -------
        values : dict or None.
            Dictionary of all parameters names and their values (into a list).
            Return None if no parameters are defined in the NetworkSet.

        """
        if self.has_params():
            # creating a dict of empty lists for each of the param keys
            values = {key: [] for key in self.dims}
            for ntwk in self.ntwk_set:
                for key, value in ntwk.params.items():
                    values[key].append(value)
            return values
        else:
            return None

    @property
    def params_types(self) -> dict | None:
        """
        Return a dictionary describing the data type of each parameters.

        Returns
        -------
        data_types : dict or None.
            Dictionary of the (guessed) type of each parameters.
            Return None if no parameters are defined in the NetworkSet.

        """
        # for each parameter, scan all the value and try to guess the type
        # If is not a int, and not a float (double), then it's a string
        if self.has_params():
            data_types = {}
            values = self.params_values
            for key in values:
                try:
                    _ = [int(v) for v in values[key]]
                    data_types[key] = 'int'
                except ValueError:  # not an int
                    try:
                        _ = [float(v) for v in values[key]]
                        data_types[key] = 'double'
                    except ValueError:  # not a float -> then a string
                        data_types[key] = 'string'

            return data_types
        else:
            return None

    def to_dataframe(self, attrs: list[str] = None, ports: list[tuple[int, int]] = None, port_sep: str | None = None):
        """
        Convert attributes of a NetworkSet to a pandas DataFrame.

        Use the same parameters than :func:`skrf.io.general.network_2_dataframe`

        Parameters
        ----------
        attrs : list of string
            Network attributes to convert, like ['s_db','s_deg']
        ports : list of tuples
            list of port pairs to write. defaults to ntwk.port_tuples
            (like [[0,0]])
        port_sep : string
            defaults to None, which means a empty string "" is used for
            networks with lower than 10 ports. (s_db 11, s_db 21)
            For more than ten ports a "_" is used to avoid ambiguity.
            (s_db 1_1, s_db 2_1)
            For consistent behaviour it's recommended to specify "_" or
            "," explicitly.

        Returns
        -------
        df : `pandas.DataFrame`

        Raises
        ------
        ValueError : if the networkset doesn't have parameters


        See Also
        ---------
        skrf.io.general.network_2_dataframe
        """

        if not self.params:
            raise ValueError(
                "The NetworkSet must have parameters to be combined into a dataframe. "
                "Try using `ntwk_attr_2_df` instead."
            )

        dfs = []
        for ntwk in self.ntwk_set:
            # Create a dataframe for each network
            df = ntwk.to_dataframe(attrs=attrs, ports=ports, port_sep=port_sep)

            # Insert the parameters and values for each network
            df[list(ntwk.params.keys())] = list(ntwk.params.values())

            # Get the columns by type
            data_cols = df.columns[:-1 * len(ntwk.params)].tolist()
            param_cols = df.columns[-1 * len(ntwk.params):].tolist()

            # Append to the list of dataframes with the parameter columns first
            dfs.append(df[param_cols + data_cols])

        # Return a concatenated dataframe
        return pd.concat(dfs)

    def sel(self, indexers: Mapping[Any, Any] = None) -> NetworkSet:
        """
        Select Network(s) in the NetworkSet from a given value of a parameter.

        Parameters
        ----------
        indexers : dict, optional
            A dict with keys matching dimensions and values given by scalars,
            or arrays of parameters.
            Default is None, which returns the entire NetworkSet

        Returns
        -------
        ns : NetworkSet
             NetworkSet containing the selected Networks or
             an empty NetworkSet if no match is found

        Example
        -------
        Creating a dummy example:

        >>> params = [
                {'a':0, 'X':10, 'c':'A'},
                {'a':1, 'X':10, 'c':'A'},
                {'a':2, 'X':10, 'c':'A'},
                {'a':1, 'X':20, 'c':'A'},
                {'a':0, 'X':20, 'c':'A'},
                ]
        >>> freq1 = rf.Frequency(75, 110, 101, 'ghz')
        >>> ntwks_params = [rf.Network(frequency=freq1,
                                       s=np.random.rand(len(freq1),2,2),
                                       name=f'ntwk_{m}',
                                       comment=f'ntwk_{m}',
                                       params=params) \
                                    for (m, params) in enumerate(params) ]
        >>> ns = rf.NetworkSet(ntwks_params)

        Selecting the sub-NetworkSet matching scalar parameters:

        >>> ns.sel({'a': 1})  # len == 2
        >>> ns.sel({'a': 0, 'X': 10})  # len == 1

        Selectong the sub-NetworkSet matching a range of parameters:

        >>> ns.sel({'a': 0, 'X': [10,20]})  # len == 2
        >>> ns.sel({'a': [0,1], 'X': [10,20]}) # len == 4

        If using a parameter name of value that does not exist, returns empty NetworkSet:

        >>> ns.sel({'a': -1})  # len == 0
        >>> ns.sel({'duh': 0})  # len == 0

        """
        from collections.abc import Iterable

        if not indexers:  # None or {}
            return self.copy()

        if not self.has_params():
            return NetworkSet()

        if not isinstance(indexers, dict):
            raise TypeError('indexers should be a dictionary.')

        for p in indexers.keys():
            if p not in self.dims:
                return NetworkSet()

        ntwk_list = []
        for k in self.ntwk_set:
            match_list = [k.params[p] in (v if isinstance(v, Iterable) else [v])
                          for (p, v) in indexers.items()]
            if all(match_list):
                ntwk_list.append(k)

        if ntwk_list:
            return NetworkSet(ntwk_list)
        else:  # no match found
            return NetworkSet()


    def interpolate_from_params(self, param: str, x: float,
                                sub_params: dict=None, interp_kind: str = 'linear'):
        """
        Interpolate a Network from given parameters of NetworkSet's Networks.

        Parameters
        ----------
        param : string
            Name of the parameter to interpolate the NetworkSet with
        x : float
            Point to evaluate the interpolated network at
        sub_params : dict, optional
            Dictionary of parameter/values to filter the NetworkSet,
            if necessary to avoid an ambiguity.
            Default is empty dict.
        interp_kind: str
            Specifies the kind of interpolation as a string: 'linear', 'nearest',
            'zero', 'slinear', 'quadratic', 'cubic'.
            Cf :class:`scipy.interpolate.interp1d` for detailed description.
            Default is 'linear'.

        Returns
        -------
        ntw : class:`~skrf.network.Network`
            Network interpolated at x

        Raises
        ------
        ValueError : if the interpolating param/value are incorrect or ambiguous

        Example
        -------
        Creating a dummy example:

        >>> params = [
                {'a':0, 'X':10, 'c':'A'},
                {'a':1, 'X':10, 'c':'A'},
                {'a':2, 'X':10, 'c':'A'},
                {'a':1, 'X':20, 'c':'A'},
                {'a':0, 'X':20, 'c':'A'},
                ]
        >>> freq1 = rf.Frequency(75, 110, 101, 'ghz')
        >>> ntwks_params = [rf.Network(frequency=freq1,
                                       s=np.random.rand(len(freq1),2,2),
                                       name=f'ntwk_{m}',
                                       comment=f'ntwk_{m}',
                                       params=params) \
                                    for (m, params) in enumerate(params) ]
        >>> ns = rf.NetworkSet(ntwks_params)

        Interpolated Network for a=1.2 within X=10 Networks:

        >>> ns.interpolate_from_params('a', 1.2, {'X': 10})

        """
        # checking interpolating param and values
        if sub_params is None:
            sub_params = {}
        if param not in self.params:
            raise ValueError(f'Parameter {param} is not found in the NetworkSet params.')
        if isinstance(x, Number):
            if not (min(self.coords[param]) < x < max(self.coords[param])):
                raise ValueError(f'Out of bound values: {x} is not inside {self.coords[param]}. Cannot interpolate.')
        else:
            raise ValueError('Cannot interpolate between string-based parameters.')

        # checking sub-parameters
        if sub_params:
            for (p, v) in sub_params.items():
                # of course it should exist
                if p not in self.dims:
                    raise ValueError(f'Parameter {p} is not found in the NetworkSet params.')

                # check if each sub-param exist in the parameters
                if v not in self.coords[p]:  # also deals with string case
                    raise ValueError(f'Parameter {p} value {v} is not found in the NetworkSet params.')



        # interpolating the sub-NetworkSet matching the passed sub-parameters
        sub_ns = self.sel(sub_params)
        interp_ntwk = sub_ns.interpolate_from_network(sub_ns.coords[param],
                                                      x, interp_kind)

        return interp_ntwk

    @copy_doc(skrf_plt.animate)
    def animate(self, *args, **kwargs):
        skrf_plt.animate(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_uncertainty_bounds_component)
    def plot_uncertainty_bounds_component(self, *args, **kwargs):
        skrf_plt.plot_uncertainty_bounds_component(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_minmax_bounds_component)
    def plot_minmax_bounds_component(self, *args, **kwargs):
        skrf_plt.plot_minmax_bounds_component(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_uncertainty_bounds_s_db)
    def plot_uncertainty_bounds_s_db(self, *args, **kwargs):
        skrf_plt.plot_uncertainty_bounds_s_db(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_minmax_bounds_s_db)
    def plot_minmax_bounds_s_db(self, *args, **kwargs):
        skrf_plt.plot_minmax_bounds_s_db(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_minmax_bounds_s_db10)
    def plot_minmax_bounds_s_db10(self, *args, **kwargs):
        skrf_plt.plot_minmax_bounds_s_db10(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_uncertainty_bounds_s_time_db)
    def plot_uncertainty_bounds_s_time_db(self, *args, **kwargs):
        skrf_plt.plot_uncertainty_bounds_s_time_db(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_minmax_bounds_s_time_db)
    def plot_minmax_bounds_s_time_db(self, *args, **kwargs):
        skrf_plt.plot_minmax_bounds_s_time_db(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_uncertainty_decomposition)
    def plot_uncertainty_decomposition(self, *args, **kwargs):
        skrf_plt.plot_uncertainty_decomposition(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_logsigma)
    def plot_logsigma(self, *args, **kwargs):
        skrf_plt.plot_logsigma(self, *args, **kwargs)

    @copy_doc(skrf_plt.signature)
    def signature(self, *args, **kwargs):
        skrf_plt.signature(self, *args, **kwargs)

    @copy_doc(skrf_plt.plot_violin)
    def plot_violin(self, attribute, *args, **kwargs):
        if "time" not in attribute:
            skrf_plt.plot_violin(self, attribute, *args,**kwargs)
        else:
            raise NotImplementedError("Violin plots are not implemented for time based parameters")

def func_on_networks(ntwk_list, func, attribute='s',name=None, *args,\
        **kwargs):
    r"""
    Applies a function to some attribute of a list of networks.


    Returns the result in the form of a Network. This means information
    that may not be s-parameters is stored in the s-matrix of the
    returned Network.

    Parameters
    -------------
    ntwk_list : list of :class:`~skrf.network.Network` objects
            list of Networks on which to apply `func` to
    func : function
            function to operate on `ntwk_list` s-matrices
    attribute : string
            attribute of Network's  in ntwk_list for func to act on
    \*args,\*\*kwargs : arguments and keyword arguments
            passed to func

    Returns
    ---------
    ntwk : :class:`~skrf.network.Network`
            Network with s-matrix the result of func, operating on
            ntwk_list's s-matrices


    Examples
    ----------
    averaging can be implemented with func_on_networks by

    >>> func_on_networks(ntwk_list, mean)

    """
    data_matrix = np.array([getattr(ntwk, attribute) for ntwk in ntwk_list])

    new_ntwk = ntwk_list[0].copy()
    new_ntwk.s = func(data_matrix,axis=0,**kwargs)

    if name is not None:
        new_ntwk.name = name

    return new_ntwk

# short hand name for convenience
fon = func_on_networks


def getset(ntwk_dict, s, *args, **kwargs):
    r"""
    Creates a :class:`NetworkSet`, of all :class:`~skrf.network.Network`s
    objects in a dictionary that contain `s` in its key. This is useful
    for dealing with the output of
    :func:`~skrf.io.general.load_all_touchstones`, which contains
    Networks grouped by some kind of naming convention.

    Parameters
    ------------
    ntwk_dict : dictionary of Network objects
        network dictionary that contains a set of keys `s`
    s : string
        string contained in the keys of ntwk_dict that are to be in the
        NetworkSet that is returned
    \*args,\*\*kwargs : passed to NetworkSet()

    Returns
    --------
    ntwk_set :  NetworkSet object
        A NetworkSet that made from values of ntwk_dict with `s` in
        their key

    Examples
    ---------
    >>>ntwk_dict = rf.load_all_touchstone('my_dir')
    >>>set5v = getset(ntwk_dict,'5v')
    >>>set10v = getset(ntwk_dict,'10v')
    """
    ntwk_list = [ntwk_dict[k] for k in ntwk_dict if s in k]
    if len(ntwk_list) > 0:
        return NetworkSet( ntwk_list,*args, **kwargs)
    else:
        print(f'Warning: No keys in ntwk_dict contain \'{s}\'')
        return None


def tuner_constellation(name='tuner', singlefreq=76, Z0=50, r_lin = 9, phi_lin=21, TNWformat=True):
    r = np.linspace(0.1,0.9,r_lin)
    a = np.linspace(0,2*np.pi,phi_lin)
    r_, a_ = np.meshgrid(r,a)
    c_ = r_ *np.exp(1j * a_)
    g= c_.flatten()
    x =  np.real(g)
    y =  np.imag(g)

    if TNWformat :
        TNL = dict()
        # for ii, gi in enumerate(g) :
        for ii, gi in enumerate(g) :
            TNL['pos'+str(ii)] = Network(f = [singlefreq ], s=[[[gi]]], z0=[[Z0]], name=name +'_' + str(ii))
        TNW = NetworkSet(TNL, name=name)
        return TNW, x,y,g
    else :
        return x,y,g