File: qfactor.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (1296 lines) | stat: -rw-r--r-- 46,244 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
r"""
Qfactor (:mod:`skrf.qfactor`)
========================================
Module for estimating the Quality (Q) factor(s) from S-parameters.

This class implements methods for determining *loaded* and *unloaded* Q-factor
from frequency-domain S-parameters, that can be applied to measurements
of transmission or reflection.

Documentation and implementation are adapted from [MAT58]_

Q-factor
--------
.. autosummary::
    :toctree: generated/
    :nosignatures:
    :recursive:

    Qfactor

.. currentmodule:: skrf.qfactor


Loaded and Unloaded Q-factor
----------------------------
The Quality factor (Q-factor) of a resonator is defined by [Pozar]_:

.. math::

    Q = \frac{2 \pi U}{\Delta U}


where :math:`U` is the average energy stored by the resonator and
:math:`\Delta U` is the decrease in the average stored energy per wave cycle
at the resonant frequency, that is, the average power loss.

The *loaded* Q-factor, :math:`Q_L`, describes energy dissipation within the
entire resonant system comprising of the resonator itself and the instrument
used for observing resonances. The term loading refers to the effect that the
external circuit has on measured quantities.

The external circuit consists of the measuring instrument and uncalibrated lines,
but not the couplings of microwave resonators. Loading by an instrument that
has 50 Ohm impedance, such as a VNA, causes :math:`Q_L` to be reduced substantially
if strong coupling is used.

For many applications the quantity that is desired is the *unloaded* Q-factor :math:`Q_0`,
which is determined by energy dissipation associated with the resonator only
and therefore gives the best description of the resonant mode(s).

In other words, :math:`Q_0` is the Q-factor of the uncoupled resonator. The value of
:math:`Q_0` can be estimated from measurements of :math:`Q_L`, but cannot be measured directly.
:math:`Q_0` is largely governed by ohmic loss arising from surface currents
in the metal conductors (walls and loop couplings), and from dielectric loss
in any insulating materials that may be present.


Relationships between Loaded and Unloaded Q-factors
---------------------------------------------------
Energy dissipation in the external circuit is characterised by the *external* Q-factor,
:math:`Q_e`. For both series and parallel equivalent circuits, the three
Q-factors are related by [Pozar]_:

.. math::

    \frac{1}{Q_L} = \frac{1}{Q_0} + \frac{1}{Q_e}


The coupling factor :math:`\beta` is defined for each port as:

.. math::

    \beta = \frac{Q_0}{Q_e}


Finding the unloaded Q from measured S-parameters consists in first finding
the coupling factor, then measure :math:`Q_L` from the 3 dB bandwidth
and using the relationships above.

Fortunately, scikit-rf implements methods for determining loaded and
unloaded Q-factors from frequency-domain S-parameters. The implemented methods
are described in detail in [MAT58]_, and can be applied to measurements of
transmission or reflection.

Q-factor determination through equivalent-circuit models
--------------------------------------------------------
Characterisation of resonances from measurements in the frequency-domain
can be achieved through equivalent-circuit models [MAT58]_. Resonators can be
modelled as an ideal RLC resonator connected to an external circuit,
incorporating elements to account for a lossy coupling and coupling reactances.

For high Q-factor resonators (in practice, :math:`Q_L` > 100), the S-parameter
response of a resonator measured in a calibrated system with reference planes
at the resonator couplings can be expressed like [MAT58]_, [Galwas]_ :

.. math::

    S = S_D + d \frac{e^{−2j\delta}}{1 + j Q_L t}


where :math:`S_D` is the detuned S-parameter measured at frequencies far above or below
resonance, :math:`d` is The diameter of the Q-circle, :math:`\delta` is a
real-valued constant that defines the orientation of the Q-circle, and :math:`t`
is the fractional offset frequency given by:

.. math::

    t = \frac{f}{f_L} - \frac{f_L}{f}  \approx 2 \frac{f − f_L}{f_L}


where :math:`f_L` is the loaded resonant frequency and :math:`f` the frequency
at which S is measured. This equation can be applied to measurements
by transmission (S21 or S12) or reflection (S11 or S22).

The S-parameters are fitted against a modified expression of the above equations
to deduce the resonant frequency, loaded and unloaded Q-factors and other properties.

References
----------
.. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
    A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
    https://eprintspublications.npl.co.uk/9304/

.. [Pozar] D. M. Pozar, Microwave engineering, 4th ed. J. Wiley, 2012.

.. [Galwas] B. A. Galwas, ‘Scattering Matrix Description of Microwave
   Resonators’, IEEE Trans. Microwave Theory Techn., vol. 31, no. 8,
   pp. 669–671, Aug. 1983, doi: 10.1109/TMTT.1983.1131566.

"""
from __future__ import annotations

from warnings import warn

import numpy as np

from .constants import NumberLike
from .frequency import Frequency
from .network import Network

# Available resonance types
RESONANCE_TYPES = ['reflection', 'reflection_method2',
                   'transmission', 'absorption']


class OptimizedResult(dict):
    """Represent Q-factor optimisation result.

    Attributes
    ----------
    Q_L : float
        Loaded Quality factor
    f_L : float
        Resonance frequency [Hz]
    success: bool
        Is the fit method has been successfully performed
    method: str
        Fitting method used.
    m1, m2, m3, ...: float
        Coefficients described in [MAT58]_
    number_iterations: int
        Number of iterations performed.

    Notes
    -----
    `OptimizedResult` may have additional attributes not listed here depending
    on the specific fitting method used. Since this class is essentially a
    subclass of dict with attribute accessors, one can see which
    attributes are available using the `OptimizedResult.keys` method.

    References
    ----------
    .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
        A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
        https://eprintspublications.npl.co.uk/9304/

    """

    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError as e:
            raise AttributeError(name) from e

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __repr__(self):
        if self.keys():
            m = max(map(len, list(self.keys()))) + 1
            return '\n'.join([k.rjust(m) + ': ' + repr(v)
                              for k, v in sorted(self.items())])
        else:
            return self.__class__.__name__ + "()"

    def __dir__(self):
        return list(self.keys())


class Qfactor:
    """
    Q-factor calculation class.

    This class implements methods for determining *loaded* and *unloaded* Q-factor
    from frequency-domain S-parameters, that can be applied to measurements
    of transmission or reflection.

    Parameters
    ----------
    ntwk : :class:`~skrf.network.Network` object
        A 1-port scikit-rf Network.
        If your device is a N-port, pass the desired sub-S-parameters to fit
        the data from, like `ntwk.s21`.
    res_type : str
        Specifies the resonance type: 'reflection', 'transmission',
        'reflection_method2' or 'absorption':
        'reflection' is generally suited for undercoupled resonators,
        while 'reflection_method2' is favoured for coupling with large loop.
    Q_L0 : float, optional. Default is None.
        Estimated loaded Q-factor, used to improve fitting.
    f_L0 : float, optional. Default is None.
        Estimated loaded resonant frequency, used to improve fitting [Hz]
        If None, automatically search for the min or max,
        depending on the resonance type defined by `res_type`.
    verbose : bool, optional. Default is False.
        Boolean flag controlling output of information to the console.

    Raises
    ------
    ValueError
        If the passed Network is not 1-port or if the resonance type is unknown.

    Notes
    -----
    Uncalibrated line should be de-embedded (if it has significant
    length) from the S-parameter data before calling the functions
    in this module to get best results.

    """

    def __init__(self,
                 ntwk: Network,
                 res_type: str,
                 Q_L0: None | float = None,
                 f_L0: None | float = None,
                 verbose: bool = False):
        """Q-factor initializer."""
        # check ntwk is a 1-port
        if ntwk.nports != 1:
            raise ValueError('The Network is not a 1-port Network.')
        if res_type not in RESONANCE_TYPES:
            raise ValueError(f'res_type must be in: {RESONANCE_TYPES}.')

        self.s = ntwk.s
        self.f = ntwk.f
        self.f_scaled = ntwk.frequency.f_scaled
        self.f_multiplier = ntwk.frequency.multiplier
        self.f_unit = ntwk.frequency.unit
        self._ntwk = ntwk
        self.res_type = res_type
        self.tol = 1.0e-5
        self.verbose = verbose
        self.fitted = False
        self.opt_res = None

        self.N = len(self.f)

        # step 1: initial_fit. Deduce premilinary values for Q_L and f_L.
        self._initial_fit(self.N, Q_L0, f_L0)

    def __str__(self) -> str:
        if self.fitted:
            status = f"fitted: f_L={float(self.f_L/self.f_multiplier):.3f}{self.f_unit}, Q_L={float(self.Q_L):.3f}"
        else:
            status = 'not fitted'

        _str = f"Q-factor of Network {self._ntwk.name}. ({status})"
        return _str

    def __repr__(self) -> str:
        return self.__str__()

    def fit(self,
            method: str = "NLQFIT6",
            loop_plan: str = 'fwfwc'
            ) -> OptimizedResult:
        """Fit Q-factor from S-parameter data.

        Fitting overwrites the parameters `Q_L` and `f_L`.

        Parameters
        ----------
        method : str, optional
            Fitting method : 'NLQFIT6' (default), 'NLQFIT7', 'NLQFIT8':

            - 'NLQFIT6': Least Square Minimum of Eq.21 [MAT58]_ with 6 coefficients.
            - 'NLQFIT7': Least Square Minimum of Eq.26 [MAT58]_ with 7 coefficients,
              including one that characterize the trans. line length.
            - 'NLQFIT8': Least Square Minimum of Eq.43 [MAT58]_ with 8 coefficients,
              A model for frequency-dependent leakage.
        loop_plan : str, optional
            Defines order of steps used by the fitting process.
            The convergence algorithm uses a number of steps set by loop_plan,
            a string of characters as follows:

            - 'f': fit once without testing for convergence
            - 'c': repeated fit, iterating until convergence is obtained
            - 'w': re-calculate weighting factors on basis of previous fit
            - Initially the weighting factors are all unity.
            - The first character in `loop_plan` must not be 'w'.
            e.g.: 'fwfwc' (default).

        Returns
        -------
        result : :class:`~skrf.qfactor.OptimizedResult`

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/

        """

        for op in loop_plan:
            if op not in ['f', 'c', 'w']:
                raise ValueError("Unexpected character in loop_plan")
        if loop_plan[-1] == "w":
            raise ValueError("Last item in loop_plan must not be w (weight calculation)")
        if loop_plan[0] == "w":
            raise ValueError("First item in loop_plan must not be w (weight calculation)")
        if loop_plan[-1] != "c":
            warn("Last item in loop_plan is not c so convergence not tested!", stacklevel=2)

        self.method = method
        self.loop_plan = loop_plan

        # step 2: least square fitting
        if method == 'NLQFIT6':
            result = self._optimise_fit6(self.N)
        elif method == 'NLQFIT7':
            result = self._optimise_fit7(self.N)
        elif method == 'NLQFIT8':
            result = self._optimise_fit8(self.N)

        # overwrite results in self
        self.Q_L = result.Q_L
        self.f_L = result.f_L
        self.fitted = True
        self.opt_res = result

        if result.Q_L < 0:
            warn('Negative Q_L, fitting may be inaccurate.', stacklevel=2)

        return result

    @staticmethod
    def angular_weights(f: NumberLike,
                        f_L: NumberLike,
                        Q_L: NumberLike
                        ) -> NumberLike:
        r"""Diagonal elements W_i of weights matrix.

        .. math::

            W_i = \frac{1}{\left[ \frac{2 Q_L (f_i - f_L)}{f_L} \right]^2 + 1}


        The weights are needed when frequencies are equally-spaced
        (rather than points equally spaced around the Q-circle), and help
        reducing systematic error [MAT58]_.

        Parameters
        ----------
        f : np.ndarray
            Frequency values array.
        f_L : float
            Loaded resonant frequency.
        Q_L : float
            Loaded Q-factor.

        Returns
        -------
        W_i : np.ndarray
            Weighting factors in proportion to the rate of change of angle
            with frequency relative to the centre of the Q-circle.

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/
            section 2.4, eqn. (28).

        """
        ptmp = 2 * Q_L * (f - f_L) / f_L
        W_i = 1 / (ptmp ** 2 + 1)
        return W_i

    def _initial_fit(self,
                    N: int,
                    Q_L0: float | None = None,
                    f_L0: None | float = None
                    ):
        """Initial Linear least squares Q-factor fit.

        As this is not optimised in this function (use `fit`), the solution
        will only be approximate. This method is called during the
        initialization of the `Qfactor` class. Note that a reasonable estimate
        for the resonant frequency should be supplied is multiple resonances
        are present.

        Also calculate the internal parameters a, b and QL from ([MAT58]_, eqn. 17)

        Parameters
        ----------
        N : int
            Number of points.
        Q_L0 : float, optional. Default is None.
            Estimated loaded Q-factor (will be improved by fitting).
        f_L0 : float, optional. Default is None.
            Estimated loaded resonant frequency, used to improve fitting [Hz]

        Returns
        -------
        None

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/
            section 2.1, eqn. (17).

        """
        if f_L0 is None:
            # search for the initial value of the resonance frequency
            if self.res_type in ['reflection', 'reflection_method2', 'absorption']:
                # Find minimum in |S11|
                index_min = np.argmin(np.abs(self.s))
                f_L0 = self.f[index_min]
            else:
                # Find peak in |S21|
                index_max = np.argmax(np.abs(self.s))
                f_L0 = self.f[index_max]

        # Q_L0 : An order-of-magnitude estimate for Q_L-factor
        if Q_L0 is None:
            # The value 5.0 should work well
            # for initial and optimised fits (Section 2.6).
            mult = 5.0
            Q_L0 = mult * f_L0/(self.f[-1] - self.f[0])

        if self.verbose:
            print(f'Initial estimation: Q_L0={Q_L0}, f_L0={f_L0}')

        N2 = 2 * N
        M = np.zeros([N2, 5])
        G = np.zeros(N2)[:, np.newaxis]

        for i in range(N):
            i2 = i + N
            t = 2.0 * (self.f[i] / f_L0 - 1.0)
            y = 1.0 / complex(1.0, Q_L0 * t)
            v = t * y
            v1 = y * self.s[i, 0, 0]
            G[i] = v1.real
            G[i2] = v1.imag
            v2 = v1 * t
            M[i, :] = np.array([v.real, -v.imag, y.real, -y.imag, v2.imag])
            M[i2, :] = np.array([v.imag, v.real, y.imag, y.real, -v2.real])

        T = M.transpose()  # unweighted
        C = T @ M
        q = T @ G
        sv = np.linalg.solve(C, q)
        a_re, a_im, b_re, b_im, Q_L = sv

        self._a = (a_re + 1j*a_im)[0]
        self._b = (b_re + 1j*b_im)[0]
        self.Q_L = Q_L[0]
        self.f_L = f_L0

        if self.verbose:
            print(f'Preliminary estimation: Q_L={self.Q_L}, f_L={self.f_L}')


    def _optimise_fit6(self, N: int):
        """Iterative non-linear fit, NLQFIT6 Step (2).

        Optimised fit of Q-factor (Q_L) and resonant frequency (f_L)
        by the gradient-descent method [MAT58]_.

        Uses the results of the initial fit as the starting
        values for the iteration.

        Parameters
        ----------
        N : int
            Number of points.

        Returns
        -------
        res : OptimizedResult
            Fitted values.

        References
        ----------
        .. [MAT58] MAT 58, section 2.2, eqn. (22).

        """
        N2 = N * 2
        iterations = 0
        PV = np.ones(N)  # default weights vector
        PV2 = np.ones(N2)

        m1 = self._a.imag / self.Q_L  # a''/QL
        m2 = -self._a.real / self.Q_L
        m3 = self._b.real - m1
        m4 = self._b.imag - m2
        m5 = self.Q_L
        Flwst = self.f[0]  # lowest freq. is a convenient normalisation factor.
        m6 = Flwst * m5 / self.f_L
        last_op = "n"
        weighting_ratio = None
        number_iterations = 0

        ## Loop through all of the operations specified in loop_plan
        for op in self.loop_plan:
            if op == "w":
                PV = self.angular_weights(self.f, Flwst * float(m5) / float(m6), float(m5))
                # PV = self.angular_weights(m5)
                weighting_ratio = max(PV) / min(PV)
                PV2 = np.concatenate((PV, PV))
                if self.verbose:
                    print("Op w, Calculate weights")
                last_op = "n"
            elif op == "c":
                seek_convergence = True
            elif op == "f":
                seek_convergence = False

            TerminationConditionMet = False
            RMS_Error = None
            while not (TerminationConditionMet):
                number_iterations += 1
                M = np.zeros([N2, 6])  # X is the transpose of M
                G = np.zeros(N2)[:, np.newaxis]
                c1 = complex(-m4, m3)
                c2 = complex(m1, m2)
                c3 = complex(m3, m4)
                for i in range(N):
                    i2 = i + N
                    y = 1.0 / complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    u = c1 * y * y * 2
                    u2 = -u * self.f[i] / Flwst
                    M[i, :] = 1.0, 0.0, y.real, -y.imag, u.real, u2.real
                    M[i2, :] = 0.0, 1.0, y.imag, y.real, u.imag, u2.imag
                    v = c2 + c3 * y
                    r = self.s[i] - v  # residual
                    G[i] = r.real
                    G[i2] = r.imag
                X = M.transpose()
                T = np.multiply(X, PV2)
                C = np.dot(T, M)
                q = np.dot(T, G)
                dm = np.linalg.solve(C, q)[:,0]
                m1 += dm[0]
                m2 += dm[1]
                m3 += dm[2]
                m4 += dm[3]
                m5 += dm[4]
                m6 += dm[5]
                del G, X, T, C, dm
                iterations = iterations + 1
                if RMS_Error is not None:
                    Last_RMS_Error = RMS_Error
                else:
                    Last_RMS_Error = None
                SumNum = 0.0
                SumDen = 0.0
                for i in range(N):
                    den = complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    ip = PV[i]
                    E = self.s[i] - complex(m1, m2) - complex(m3, m4) / den
                    SumNum = SumNum + ip * (E.real * E.real + E.imag * E.imag)
                    SumDen = SumDen + ip
                RMS_Error = np.sqrt(SumNum / SumDen)
                if self.verbose:
                    if last_op == "c":
                        print(f"Iteration {iterations}, RMS Error: {RMS_Error}")
                    else:
                        print(f"op {op}, Iteration {iterations}, RMS Error: {RMS_Error}")
                last_op = op

                if seek_convergence:
                    if Last_RMS_Error is not None:
                        delta_S = abs(RMS_Error - Last_RMS_Error)
                        TerminationConditionMet = delta_S < self.tol
                else:
                    TerminationConditionMet = True
            # After last operation, we end up here ...
            if self.verbose:
                print("Optimization done.")


        return OptimizedResult({
            'success': TerminationConditionMet,
            'm1': m1, 'm2': m2, 'm3': m3, 'm4': m4,
            'Q_L': m5,
            'f_L': m5 * Flwst / m6,
            'weighting_ratio': weighting_ratio,
            'number_iterations': number_iterations,
            'RMS_Error': RMS_Error,
            'method': self.method,
            })

    def _optimise_fit7(self, N):
        """Iterative non-linear fit, NLQFIT7 Step (2).

        Optimised fit of Q-factor (QL) and resonant frequency (FL)
        by the gradient-descent method.

        Uses the results of the initial fit (sv) as the starting
        values for the iteration.

        Parameters
        ----------
        F : np.ndarray
            Frequency points
        S : np.ndarray
            Complex data S-parameter to be fitted.
        N : int
            Number of points.
        Fseed : float
            Estimated resonant frequency.
        sv : list
            Initial solution (numpy vector or a list) found with initial_fit.
        loop_plan : str
            Characters which defines order of steps used by the fitting process
            e.g. 'fwfwc':

            - 'f': fit once without testing for convergence.
            - 'c': repeated fit, iterating until convergence is obtained.
            - 'w': re-calculate weighting factors on basis of previous fit.
        Tol : float
            Criterion for the convergence test.
            Recommend using 1.0E-5 for reflection or max(abs(S))*1.0E-5
            for transmission.
        quiet : bool
            Boolean flag controlling output of information to the console.

        Returns
        -------
        list
            list of fitted parameters: [m1, m2, m3, m4, m5, m5 * Flwst / m6, m7 / Flwst]
        weighting_ratio : float
        number_iterations : int
        RMS_Error : float

        References
        ----------
        .. [MAT58] MAT 58, section 2.3, eqn. (26).

        """
        N2 = N * 2
        iterations = 0
        PV = np.ones(N)  # default weights vector
        PV2 = np.ones(N2)

        m1 = self._a.imag / self.Q_L  # a''/QL
        m2 = -self._a.real / self.Q_L
        m3 = self._b.real - m1
        m4 = self._b.imag - m2
        m5 = self.Q_L
        Flwst = self.f[0]  # lowest freq. is a convenient normalisation factor.
        m6 = Flwst * self.Q_L / self.f_L
        m7 = 0.0
        last_op = "n"
        weighting_ratio = None
        number_iterations = 0

        ## Loop through all of the operations specified in loop_plan
        for op in self.loop_plan:

            if op == "w":
                PV = self.angular_weights(self.f, Flwst * m5 / m6, m5)
                weighting_ratio = max(PV) / min(PV)
                PV2 = np.concatenate((PV, PV))
                if self.verbose:
                    print("Op w, Calculate weights")
                last_op = "n"
                continue
            if op == "c":
                seek_convergence = True
            elif op == "f":
                seek_convergence = False
            else:
                assert 0, "Unexpected character in loop_plan"

            TerminationConditionMet = False
            RMS_Error = None
            while not (TerminationConditionMet):
                number_iterations += 1
                M = np.zeros([N2, 7])
                G = np.zeros(N2)[:, np.newaxis]
                c1 = complex(-m4, m3)
                c2 = complex(m1, m2)
                c3 = complex(m3, m4)
                for i in range(N):
                    i2 = i + N
                    y = 1.0 / complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    fdn = self.f[i] / Flwst - m5 / m6
                    pj = complex(0.0, m7 * fdn)
                    expm7 = np.exp(pj)
                    ym = y * expm7
                    u = c1 * y * ym * 2
                    u2 = -u * self.f[i] / Flwst
                    v = (c2 + y * c3) * expm7
                    u3 = v * fdn
                    M[i, :] = np.array(
                        [expm7.real,
                        -expm7.imag,
                        ym.real,
                        -ym.imag,
                        u.real,
                        u2.real,
                        -u3.imag]
                    )
                    M[i2, :] = np.array(
                        [expm7.imag,
                        expm7.real,
                        ym.imag,
                        ym.real,
                        u.imag,
                        u2.imag,
                        u3.real]
                    )
                    r = self.s[i] - v  # residual
                    G[i] = r.real
                    G[i2] = r.imag
                X = M.transpose()
                T = np.multiply(X, PV2)
                C = np.dot(T, M)
                q = np.dot(T, G)
                dm = np.linalg.solve(C, q)[:,0]
                m1 += dm[0]
                m2 += dm[1]
                m3 += dm[2]
                m4 += dm[3]
                m5 += dm[4]
                m6 += dm[5]
                m7 += dm[6]
                del G, X, T, C, dm
                iterations = iterations + 1
                if RMS_Error is not None:
                    Last_RMS_Error = RMS_Error
                else:
                    Last_RMS_Error = None

                SumNum = 0.0
                SumDen = 0.0
                for i in range(N):
                    fdn = self.f[i] / Flwst - m5 / m6
                    den = complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    pj = complex(0.0, m7 * fdn)
                    E = self.s[i] - (c2 + c3 / den) * np.exp(pj)
                    ip = PV[i]
                    SumNum = SumNum + ip * (E.real * E.real + E.imag * E.imag)
                    SumDen = SumDen + ip
                RMS_Error = np.sqrt(SumNum / SumDen)
                if self.verbose:
                    if last_op == "c":
                        print(f"Iteration {iterations}, RMS Error: {RMS_Error}")
                    else:
                        print(f"op {op}, Iteration {iterations}, RMS Error: {RMS_Error}")

                last_op = op

                if seek_convergence:
                    if Last_RMS_Error is not None:
                        delta_S = abs(RMS_Error - Last_RMS_Error)
                        TerminationConditionMet = delta_S < self.tol
                else:
                    TerminationConditionMet = True
            # After last operation, we end up here ...
            if self.verbose:
                print("Optimization done.")

        return OptimizedResult({
            'success': TerminationConditionMet,
            'm1': m1, 'm2': m2, 'm3': m3, 'm4': m4,
            'Q_L': m5,
            'f_L': m5 * Flwst / m6,
            'm7a' : m7 / Flwst,
            'weighting_ratio': weighting_ratio,
            'number_iterations': number_iterations,
            'RMS_Error': RMS_Error,
            'method': self.method,
            })

    def _optimise_fit8(self, N):
        """Iterative non-linear fit, NLQFIT8 Step (2).

        Optimised fit of Q-factor (QL) and resonant frequency (FL)
        by the gradient-descent method.

        Uses the results of the initial fit (sv) as the starting
        values for the iteration.

        Parameters
        ----------
        F : np.ndarray
            Frequency points
        S : np.ndarray
            Complex data S-parameter to be fitted.
        N : int
            Number of points.
        Fseed : float
            Estimated resonant frequency.
        sv : list
            Initial solution (numpy vector or a list) found with initial_fit.
        loop_plan : str
            Characters which defines order of steps used by the fitting process
            e.g. 'fwfwc':
                'f' - fit once without testing for convergence.
                'c' - repeated fit, iterating until convergence is obtained.
                'w' - re-calculate weighting factors on basis of previous fit.
        Tol : float
            Criterion for the convergence test.
                    Recommend using 1.0E-5 for reflection or max(abs(S))*1.0E-5
                    for transmission.
        quiet : bool
            Boolean flag controlling output of information to the console.

        Returns
        -------
        list
            list of fitted parameters: [m1, m2, m3, m4, m5, m5 * Flwst / m6, m7 / Flwst]
        weighting_ratio : float
        number_iterations : int
        RMS_Error : float

        References
        ----------
        .. [MAT58] MAT 58, sec 4.5, eqn. (43).

        """
        N2 = N * 2
        iterations = 0
        PV = np.ones(N)  # default weights vector
        PV2 = np.ones(N2)

        m1 = self._a.imag / self.Q_L  # a''/QL
        m2 = -self._a.real / self.Q_L
        m3 = self._b.real - m1
        m4 = self._b.imag - m2
        m5 = self.Q_L
        Flwst = self.f[0]  # lowest freq. is a convenient normalisation factor.
        m6 = Flwst * self.Q_L / self.f_L
        m8 = 0.0
        m9 = 0.0
        last_op = "n"
        weighting_ratio = None
        number_iterations = 0

        ## Loop through all of the operations specified in loop_plan
        for op in self.loop_plan:

            if op == "w":  # Fr                       QL
                PV = self.angular_weights(self.f, Flwst * float(m5) / float(m6), float(m5))
                weighting_ratio = max(PV) / min(PV)
                PV2 = np.concatenate((PV, PV))
                if self.verbose:
                    print("Op w, Calculate weights")
                last_op = "n"
                continue
            if op == "c":
                seek_convergence = True
            elif op == "f":
                seek_convergence = False
            else:
                assert 0, "Unexpected character in loop_plan"

            TerminationConditionMet = False
            RMS_Error = None
            while not (TerminationConditionMet):
                number_iterations += 1
                M = np.zeros([N2, 8])
                G = np.zeros(N2)[:, np.newaxis]
                c1 = complex(-m4, m3)
                c2 = complex(m1, m2)
                c3 = complex(m3, m4)
                for i in range(N):
                    i2 = i + N
                    y = 1.0 / complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    u = c1 * y * y * 2
                    u2 = -u * self.f[i] / Flwst
                    FL = Flwst * m5 / m6
                    t = 2 * (self.f[i] - FL) / FL
                    M[i, :] = np.array([1.0, 0.0, y.real, -y.imag, u.real, u2.real, t, 0.0])
                    M[i2, :] = np.array([0.0, 1.0, y.imag, y.real, u.imag, u2.imag, 0.0, t])
                    v = c2 + c3 * y + (m8 + 1j * m9) * t
                    r = self.s[i] - v  # residual
                    G[i] = r.real
                    G[i2] = r.imag
                X = M.transpose()
                T = np.multiply(X, PV2)
                C = np.dot(T, M)
                q = np.dot(T, G)
                dm = np.linalg.solve(C, q)[:,0]
                m1 += dm[0]
                m2 += dm[1]
                m3 += dm[2]
                m4 += dm[3]
                m5 += dm[4]
                m6 += dm[5]
                m8 += dm[6]
                m9 += dm[7]
                del G, X, T, C, dm
                iterations = iterations + 1
                if RMS_Error is not None:
                    Last_RMS_Error = RMS_Error
                else:
                    Last_RMS_Error = None

                SumNum = 0.0
                SumDen = 0.0
                for i in range(N):
                    den = complex(1.0, 2 * (m6 * self.f[i] / Flwst - m5))
                    FL = Flwst * m5 / m6
                    t = 2 * (self.f[i] - FL) / FL
                    ip = PV[i]
                    E = (
                        self.s[i]
                        - complex(m1, m2)
                        - complex(m8, m9) * t
                        - complex(m3, m4) / den
                    )
                    SumNum = SumNum + ip * (E.real * E.real + E.imag * E.imag)
                    SumDen = SumDen + ip
                RMS_Error = np.sqrt(SumNum / SumDen)
                if self.verbose:
                    if last_op == "c":
                        print(f"Iteration {iterations}, RMS Error: {RMS_Error}")
                    else:
                        print(f"{op}, Iteration {iterations}, RMS Error: {RMS_Error}")

                last_op = op

                if seek_convergence:
                    if Last_RMS_Error is not None:
                        delta_S = abs(RMS_Error - Last_RMS_Error)
                        TerminationConditionMet = delta_S < self.tol
                else:
                    TerminationConditionMet = True
            # After last operation, we end up here ...
            if self.verbose:
                print("Optimization done.")

        return OptimizedResult({
            'success': TerminationConditionMet,
            'm1': m1, 'm2': m2, 'm3': m3, 'm4': m4,
            'Q_L': m5,
            'f_L': m5 * Flwst / m6,
            'weighting_ratio': weighting_ratio,
            'number_iterations': number_iterations,
            'RMS_Error': RMS_Error,
            'method': self.method,
            })

    def Q_circle(self,
                 opt_res: None | OptimizedResult = None,
                 A: None | float = None
                 ) -> list:
        r"""Q-circle diameter.

        The diameter of the Q-circle (as displayed in a VNA) provides a visual
        indication of whether the coupling is strong or weak [MAT58]_.

        Parameters
        ----------
        opt_res : None or :class:`~skrf.qfactor.OptimizedResult`. Default is None.
            Solution produced by the :meth:`~skrf.qfactor.Qfactor.fit` method.
            If None, uses the solution previously calculated, if performed.
        A : None of float. Default is None.
            Scaling factor as defined in MAT 58 [MAT58]_.
            For `reflection` resonance type, can be set as None
            to use the magnitude of the fitted detuned reflection coefficient S_V

        Returns
        -------
        diam : float
            Q-circle diameter d.
        S_V : complex
            Off-resonance Reflection Coefficient.
        S_T : complex
            Tuned Reflection Coefficient.

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/,
            section 2.5, eqn. (31).

        """
        # if no solution passed, use internal solution if exist
        if opt_res is None:
            if self.opt_res is None:
                raise ValueError('No solution found or passed.')
            else:
                opt_res = self.opt_res

        # m1 : real part of cal_gamma_V
        # m2 : imag part of cal_gamma_V
        # m3 : real part of b + j a/Q_L
        # m4 : imag part of b + j a/Q_L
        m1, m2, m3, m4 = (opt_res[key] for key in ['m1', 'm2', 'm3', 'm4'])

        if A is None:
            A = 1.0 / abs(complex(m1, m2))  # scale to S_V
        elif not isinstance(A, int | float):
            raise ValueError("A should be a float or None")

        aqratio = complex(m1, m2)
        b = complex(m1 + m3, m2 + m4)
        diam = abs(b - aqratio) * A
        S_V = complex(m1, m2) * A
        S_T = b * A
        return diam, S_V, S_T


    def Q_unloaded(self,
                   opt_res: None| OptimizedResult = None,
                   A: None | float = None
                   ) -> float:
        """Unloaded Q-factor Q0.

        The value of the unloaded Q-factor Q0 cannot be measured directly but
        can be estimated from the measurement of the loaded Q-factor Q_L [MAT58]_ .

        Parameters
        ----------
        opt_res : None or :class:`~skrf.qfactor.OptimizedResult`. Default is None.
            Solution produced by the :meth:`~skrf.qfactor.Qfactor.fit` method.
            If None, uses the solution previously calculated, if performed.
        A : float or None. Default is None.
            Scaling factor as defined in MAT 58 [MAT58]_.
            For `reflection` resonance type, can be set as None
            to use the magnitude of the fitted detuned reflection coefficient S_V

        Returns
        -------
        Q0 : float
            Unloaded Q-factor.

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/

        """
        # if no solution passed, use internal solution if exist
        if opt_res is None:
            if self.opt_res is None:
                raise ValueError('No solution found or passed.')
            else:
                opt_res = self.opt_res

        if A is None:
            auto_flag = True
        elif isinstance(A, int | float):
            auto_flag = False
        else:
            raise ValueError("Illegal Scaling factor; should be a float or  None")

        m1, m2, m3, m4, m5 = (opt_res[key] for key in ['m1', 'm2', 'm3', 'm4', 'Q_L'])

        if self.res_type == "transmission":
            if auto_flag:
                raise ValueError('Scaling factor must be defined for transmission case')
            cal_diam, cal_gamma_V, cal_gamma_T = self.Q_circle(opt_res, A)
            if cal_diam == 1.0:
                raise ZeroDivisionError("Divide by zero forestalled in calculation of Q0")
            Q0 = m5 / (1.0 - cal_diam)

        elif self.res_type == "reflection":
            if auto_flag:
                if self.verbose:
                    print('A is undefined: using fitted data to estimate it')
                A = 1.0 / abs(complex(m1, m2))  # scale to S_V if A not defined
            cal_diam, S_V, S_T = self.Q_circle(opt_res, A)
            cal_touching_circle_diam = 2.0
            if self.verbose:
                print(f"Q-circle diam = {cal_diam}, touching_circle_diam = {cal_touching_circle_diam}")
            den = cal_touching_circle_diam / cal_diam - 1.0
            Q0 = m5 * (1.0 + 1.0 / den)

        elif self.res_type == "reflection_method2":
            if auto_flag:
                raise ValueError('Scaling factor must be defined for Method 2')
            cal_diam, S_V, S_T = self.Q_circle(opt_res, A)
            gv = abs(S_V)
            gv2 = gv * gv
            mb = abs(S_T)
            cosphi = (gv2 + cal_diam * cal_diam - mb * mb) / (
                2.0 * gv * cal_diam
            )  # Cosine rule
            cal_touching_circle_diam = (1.0 - gv2) / (1.0 - gv * cosphi)
            if self.verbose:
                print(f"Q-circle diam = {cal_diam}, touching_circle_diam = {cal_touching_circle_diam}")
            den = cal_touching_circle_diam / cal_diam - 1.0
            Q0 = m5 * (1.0 + 1.0 / den)

        elif self.res_type == "notch" or self.res_type == "absorption":  # By transmission
            if auto_flag:
                if self.verbose:
                    print(
                        'Notch/absorption Qo calculation: using fitted data to estimate scaling factor'
                    )
                # scale to S_V if A is undefined
                A = 1.0 / abs(complex(m1, m2))
            cal_diam, S_V, S_T = self.Q_circle(opt_res, A)
            if self.verbose:
                print(f"Q-circle diam = {cal_diam}")
            if cal_diam == 1.0:
                raise ZeroDivisionError("Divide by zero forestalled in calculation of Qo")
            den = 1.0 / cal_diam - 1.0  # Gao thesis (2008) 4.35 and 4.40
            Q0 = m5 * (
                1.0 + 1.0 / den
            )  # https://resolver.caltech.edu/CaltechETD:etd-06092008-235549
            # For this type of resonator, critical coupling occurs for cal_diam = 0.5.
        else:
            raise ValueError("Unknown resonance type {self.res_type}")

        return Q0

    def fitted_s(self,
                 opt_res: None | OptimizedResult = None,
                 f: None | np.ndarray = None
                 ) -> np.ndarray:
        # if no solution passed, use internal solution if exist
        r"""S-parameter response of an equivalent circuit model resonator.

        The approximate solution and estimated is obtained from [MAT58]_:

        .. math::

            S = m_1 + j m_2 + \frac{m_3 + j m_4}{1 + j Q_L t}

        where the m coefficients come from the fitted solution and

        .. math::

            t = \frac{f}{f_L} - \frac{f_L}{f}  \approx 2 \frac{f − f_L}{f_L}


        Parameters
        ----------
        opt_res : None or :class:`~skrf.qfactor.OptimizedResult`. Default is None.
            Solution produced by the :meth:`~skrf.qfactor.Qfactor.fit` method.
            If None, uses the solution previously calculated, if performed.
        f : None or np.ndarray. Default is None.
            frequency array [Hz]. If None, use the self frequencies.

        Returns
        -------
        s : np.ndarray
            S-parameter response.

        References
        ----------
        .. [MAT58] "Q-factor Measurement by using a Vector Network Analyser",
            A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
            https://eprintspublications.npl.co.uk/9304/,
            section 2.2, eqn. (21).

        """
        if opt_res is None:
            if self.opt_res is None:
                raise ValueError('No solution found or passed.')
            else:
                opt_res = self.opt_res

        if f is None:
            f = self.f

        # fractional offset frequency
        t = f/opt_res.f_L - opt_res.f_L/f

        y = 1/(1 + 1j*opt_res.Q_L*t)
        s = opt_res.m1 +1j*opt_res.m2 + (opt_res.m3 + 1j*opt_res.m4) * y
        return s

    def fitted_network(self,
                       opt_res: None | OptimizedResult = None,
                       frequency: None | Frequency = None,
                       ) -> Network:
        """Fitted Network.

        Return the Network corresponding to the fitted response.

        Parameters
        ----------
        opt_res : None or :class:`~skrf.qfactor.OptimizedResult`. Default is None.
            Solution produced by the :meth:`~skrf.qfactor.Qfactor.fit` method.
            If None, uses the solution previously calculated, if performed.
        frequency : None or :class:`~skrf.frequency.Frequency`. Default is None.
            Frequency for the fitted Network. If None, use the same
            Frequency than the one used to create the QFactor.

        Returns
        -------
        ntwk : :class:`~skrf.network.Network`
            Fitted Network for the passed Frequency.

        """
        # if no solution passed, use internal solution if exist
        if opt_res is None:
            if self.opt_res is None:
                raise ValueError('No solution found or passed.')
            else:
                opt_res = self.opt_res

        if frequency is None:
            frequency = self._ntwk.frequency

        s = self.fitted_s(opt_res, f=frequency.f)

        ntwk = Network(s=s, frequency=frequency)
        return ntwk

    @property
    def f_L_scaled(self) -> float:
        """
        Resonant Frequency in the frequency unit..

        Returns
        -------
        float
            Resonant frequency in the frequency unit.

        See Also
        --------
        f_L : Resonant Frequency in Hz.

        """
        if not self.fitted:
            warn('Q-factor not fitted, result may be inaccurate. Use the .fit() method before.', stacklevel=2)
        return self.f_L/self.f_multiplier

    @property
    def BW(self) -> float:
        r"""3-dB Bandwidth.

        Return the half-power fractional bandwidth (aka 3-dB bandwidth)
        defined as:

        .. math::

            BW = \frac{f_L}{Q_L}


        Returns
        -------
        float
            3-dB Bandwidth in Hz.

        See Also
        --------
        BW_scaled : 3-dB Bandwidth scaled to the frequency unit.

        """
        if not self.fitted:
            warn('Q-factor not fitted, result may be inaccurate. Use the .fit() method before.', stacklevel=2)
        return self.f_L/self.Q_L

    @property
    def BW_scaled(self) -> float:
        r"""3-dB Bandwidth scaled to the frequency unit.

        Returns
        -------
        float
            3-dB Bandwidth in the frequency unit.

        See Also
        --------
        BW : 3-dB Bandwidth in Hz.

        """
        if not self.fitted:
            warn('Q-factor not fitted, result may be inaccurate. Use the .fit() method before.', stacklevel=2)
        return self.BW/self.f_multiplier