File: test_qfactor.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (322 lines) | stat: -rw-r--r-- 12,781 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import unittest

import numpy as np
from numpy.testing import assert_allclose, assert_almost_equal, assert_array_equal

import skrf as rf


class QfactorTests(unittest.TestCase):
    """ Q-factor class tests.

    References
    ----------
    "Q-factor Measurement by using a Vector Network Analyser",
        A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
        https://eprintspublications.npl.co.uk/9304/
    """

    def setUp(self):
        """
        Q-factor tests initializer.
        """
        self.test_dir = os.path.dirname(os.path.abspath(__file__)) + "/"
        self.ntwk_2port = rf.data.ring_slot
        self.ntwk_1port = rf.data.ring_slot_meas

    def csv_file_example_to_network(self, file: str) -> rf.Network:
        """Convert the S-parameter txt file to Network.

        Parameters
        ----------
        file : str
            file path.

        Returns
        -------
        ntwk : rf.Network (1-port)

        """
        # Load frequency and S-parameter data from a file.
        try:
            f, s_re, s_im = np.loadtxt(file, comments="%", unpack=True)
        except ValueError:
            f, s_re, s_im, s_abs, s_mag = np.loadtxt(file, comments="%", unpack=True)

        s = s_re + 1j * s_im
        freq = rf.Frequency.from_f(f, unit='GHz')
        return rf.Network(s=s, frequency=freq)

    def test_constructor(self):
        """
        Test the Qfactor() constructor.
        """
        # constructor tests
        _Q1 = rf.Qfactor(self.ntwk_1port, res_type='reflection')
        _Q2 = rf.Qfactor(self.ntwk_1port, res_type='reflection', Q_L0=3)
        _Q3 = rf.Qfactor(self.ntwk_1port, res_type='reflection', f_L0=85e9)
        _Q3 = rf.Qfactor(self.ntwk_1port, res_type='reflection', Q_L0=3, f_L0=85e9)

    def test_exceptions(self):
        "Test the raised exceptions."

        # Passing a 2-port Network raises a ValueError
        self.assertRaises(ValueError, rf.Qfactor, self.ntwk_2port, 'reflection')

        # Incorrect resonance type raises a ValueError
        self.assertRaises(ValueError, rf.Qfactor, self.ntwk_1port, 'dummy')

        # Asking for fitted S-param and Network without prior fit raises a ValueError
        _Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
        self.assertRaises(ValueError, _Q.fitted_s)
        self.assertRaises(ValueError, _Q.fitted_network)

    def test_NLQFIT6(self):
        """
        Fit FL and QL to transmission (S21) data by using the NLQFIT6 algorithm.

        References
        ----------
        Test data is read from file Figure6b.txt (as used in Figure 6(b) of MAT 58).

        """
        # File 'Figure6b.txt' contains S21 data for Fig. 6(b) in MAT 58
        ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure6b.txt")

        Q = rf.Qfactor(ntwk, res_type='transmission', verbose=True)

        # Test against expected solutions
        assert_almost_equal(Q._a, 0.8104 - 1.6928j, decimal=4)
        assert_almost_equal(Q._b, 0.0077 - 0.0071j, decimal=4)
        assert_almost_equal(Q.Q_L, 7440.848, decimal=3)

        # Optimised weighted fit --> result vector
        res = Q.fit(method="NLQFIT6")

        # Test against expected solutions
        assert_allclose(res.f_L, 3.987848e9)
        assert_almost_equal(res.Q_L, 7454, decimal=0)
        assert_almost_equal(res.RMS_Error, 0.00001216)
        assert_array_equal(res.f_L, Q.f_L)
        assert_array_equal(res.Q_L, Q.Q_L)

        # Now calculate unloaded Q-factor and some other useful quantities.
        # Reciprocal of |S21| of a thru in place of resonator
        scaling_factor_A = 1 / 0.874  # 1/|S21_thru|
        Q0 = Q.Q_unloaded(res, scaling_factor_A)
        cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res, scaling_factor_A)

        # Q-factor of uncoupled two-port resonator (unloaded Q-factor)
        assert_almost_equal(Q0, 7546, decimal=0)
        assert_almost_equal(cal_diam, 0.0121, decimal=4)
        # S21 detuned = leakage vector
        assert_almost_equal(cal_gamma_V, -0.00008895 + 0.00003852j)
        # S21 tuned
        assert_almost_equal(cal_gamma_T, 0.00849357 - 0.00845349j)

    def test_NLQFIT6_2(self):
        """
        Fit FL and QL to transmission (S21) data by using the NLQFIT6 algorithm.

        From a two-port superconducting absorption resonator.

        References
        ----------
        Test data is read from file Figure27.txt (as used in Figure 27 of MAT 58).

        """
        ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure27.txt")

        Q = rf.Qfactor(ntwk, res_type='absorption', verbose=True)

        # Test against expected solutions
        assert_almost_equal(Q._a, -17072.3098 + 9047.0761j, decimal=4)
        assert_almost_equal(Q._b, 0.0063 + 0.0168j, decimal=4)

        # Q.tol = 1.0e-5 * np.argmax(np.abs(Q.s))

        # Step 2: Optimised weighted fit --> result vector
        res = Q.fit(method="NLQFIT6")

        assert_allclose(res.f_L, 6.07225567e9)
        assert_almost_equal(res.Q_L, 56019.85, decimal=0)
        assert_almost_equal(res.weighting_ratio, 4.714, decimal=3)
        assert_almost_equal(res.RMS_Error, 0.01394722)
        assert_allclose(Q.Q_L, res.Q_L)
        assert_allclose(Q.f_L, res.f_L)

        Q0 = Q.Q_unloaded(res)
        cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res)

        assert_allclose(Q0, 1846782, rtol=1/100)
        assert_allclose(cal_diam, 0.970, rtol=1/100)
        assert_almost_equal(2.0 * res.f_L / res.Q_L/1e9, 0.00021678942580071302, decimal=10)



    def test_NLQFIT7(self):
        """
        Fit FL and QL to reflection (S11) data by using the NLQFIT7 algorithm.

        References
        ----------
        Test data is read from file Table6c27.txt (as used in Figure 16 and
        Table 6(c) of MAT 58).

        """
        ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Table6c27.txt")

        Q = rf.Qfactor(ntwk, res_type='reflection', verbose=True)
        # Expected results after initial fit
        assert_almost_equal(Q._a, 760.9731 + 67.7804j, decimal=4)
        assert_almost_equal(Q._b, 0.0609 - 0.6432j, decimal=4)
        assert_almost_equal(Q.Q_L, 779.068, decimal=3)

        # Expected results after fit
        res = Q.fit(method='NLQFIT7')
        # Fitted length of uncalibrated line [m]
        assert_almost_equal(-res.m7a*rf.c/(4.0*np.pi*1.3), 57.47056249053462e-3)
        assert_allclose(Q.f_L, 3.65293800e9)
        assert_almost_equal(Q.Q_L, 708, decimal=0)

        # Unloaded Q-factor and some other useful quantities.
        print("Q-factor of unloaded one-port resonator by Method 1:")
        print("Assumes attenuating uncalibrated line")
        Q0 = Q.Q_unloaded(res)
        cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res)

        # Test against expected solutions
        assert_almost_equal(Q0, 862, decimal=0)
        assert_almost_equal(cal_diam, 0.3573, decimal=4)
        assert_almost_equal(cal_gamma_V, 0.09084890 - 0.99586469j)  # S11 detuned
        assert_almost_equal(cal_gamma_T, 0.05878773 - 0.64003179j)  # S11 tuned

        print("Q-factor of unloaded one-port resonator by Method 2:")
        print("Scaling factor A = 1.0 (assume no attenuation in uncalibrated line)")
        Q2 = rf.Qfactor(ntwk, res_type='reflection_method2', verbose=True)
        res2 = Q2.fit(method='NLQFIT7')

        Q0_2 = Q.Q_unloaded(res2, A=1)
        cal_diam2, cal_gamma_V2, cal_gamma_T2 = Q.Q_circle(res2, A=1)

        # Test against expected solutions
        assert_almost_equal(Q0_2, 862, decimal=0)
        assert_almost_equal(res2.weighting_ratio, 28.317, decimal=3)
        assert_almost_equal(res2.RMS_Error, 0.00145957)
        assert_almost_equal(cal_diam2, 0.3573, decimal=2)
        assert_almost_equal(cal_gamma_V2, 0.08996562 - 0.98618239j)
        assert_almost_equal(cal_gamma_T2, 0.05821616 - 0.63380908j)

    def test_NLQFIT8(self):
        """
        Fits to transmission (S21) data by using the NLQFIT8 algorithm.

        frequency-dependent leakage

        References
        ----------
        Test data is read from file Figure23.txt (shown in Figure 23 of MAT 58)

        """
        ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure23.txt")

        Q = rf.Qfactor(ntwk, res_type='transmission')

        # # De-embed cables
        # N = len(Q.f)
        ncablelen = 1.2  # root_eps * cable length in metres
        # D =  ntwk.s[:,0,0]* np.exp(-1j * 2*np.pi *Q.f * ncablelen / rf.c)

        # ntwk2 = ntwk.copy()
        # ntwk2.s[:,0,0] = D

        # piece of transmission line to deembbed
        gamma = 0 - 1j*ntwk.frequency.w * ncablelen / rf.c
        coax = rf.media.DefinedGammaZ0(frequency=ntwk.frequency, gamma=gamma)
        line = coax.line(1/2, unit='m')
        ntwk2 = line.inv ** ntwk

        # Find peak in |S21| - this is used to give initial value of freq.
        # Tol is 1.0E-5 * |S21| at peak.
        Mg = np.abs(ntwk2.s).squeeze()
        index_max = np.argmax(Mg)
        Fseed = Q.f[index_max]

        # Set Qseed: An order-of-magnitude estimate for Q-factor
        mult = 5.0  # Not critical. A value of around 5.0 will work well for initial and optimised fits (Section 2.6).
        Qseed = mult * Fseed / (Q.f[-1] - Q.f[0])

        Q = rf.Qfactor(ntwk2, res_type='transmission', Q_L0=Qseed, f_L0=Fseed)
        assert_almost_equal(Q._a, 8.9408 + 2.1298j, decimal=4)
        assert_almost_equal(Q._b, 0.0054 - 0.0045j, decimal=4)
        assert_almost_equal(Q.Q_L, 4664.2418, decimal=3)

        # Step 2: Optimised weighted fit
        res = Q.fit(method="NLQFIT8", loop_plan="fwfwfwc")

        # Unloaded Q-factor and some other useful quantities.
        # Reciprocal of |S21| of a thru in place of resonator
        scaling_factor_A = 1 / 0.949  # 1/|S21_thru|
        Q0 = Q.Q_unloaded(res, scaling_factor_A)
        cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res, scaling_factor_A)

        # Test against expected solutions
        assert_allclose(Q.f_L, 9.76015571e9)
        assert_almost_equal(Q.Q_L, 4760.04, decimal=0)
        assert_almost_equal(Q0, 4789.49, decimal=0)
        assert_almost_equal(res.weighting_ratio, 5.078, decimal=3)
        assert_almost_equal(res.RMS_Error, 0.00000910)
        assert_almost_equal(cal_diam, 0.0061, decimal=2)

    def test_Q_unloaded(self):
        """Test unloaded Q factor method."""
        Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
        res = Q.fit()
        self.assertRaises(ValueError, Q.Q_unloaded, A='dummy')
        self.assertRaises(ValueError, Q.Q_unloaded, A=1j)
        self.assertRaises(ValueError, Q.Q_unloaded, res, A='dummy')
        self.assertRaises(ValueError, Q.Q_unloaded, res, A=1j)

        # passing of not the fitted results after fit should be the same
        self.assertEqual(Q.Q_unloaded(res), Q.Q_unloaded())
        # passing a different solution should lead to different values
        res2 = Q.fit(method="NLQFIT7")
        self.assertNotEqual(Q.Q_unloaded(res), Q.Q_unloaded(res2))

    def test_Q_circle(self):
        """Test Q-circle method."""
        Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
        res = Q.fit(method="NLQFIT6")
        self.assertRaises(ValueError, Q.Q_circle, A='dummy')
        self.assertRaises(ValueError, Q.Q_circle, A=1j)
        self.assertRaises(ValueError, Q.Q_circle, res, A='dummy')
        self.assertRaises(ValueError, Q.Q_circle, res, A=1j)

        # passing of not the fitted results after fit should be the same
        self.assertEqual(Q.Q_circle(res), Q.Q_circle())
        # passing a different solution should lead to different values
        res2 = Q.fit(method="NLQFIT7")
        self.assertNotEqual(Q.Q_circle(res), Q.Q_circle(res2))

    def test_f_L(self):
        "Test resonant frequency values."
        # expected values
        f_L_expected = self.ntwk_2port.f[np.argmin(self.ntwk_2port.s11.s_mag)]
        f_L_expected_scaled = f_L_expected/self.ntwk_2port.frequency.multiplier
        # fitted values
        Q = rf.Qfactor(self.ntwk_2port.s11, res_type='reflection')
        # before the fit, warnings should be raised
        with self.assertWarns(Warning):
            # the resonance frequency corresponds to min value before fitting
            assert_almost_equal(Q.f_L, f_L_expected)
            assert_almost_equal(Q.f_L_scaled, f_L_expected_scaled)
        # NB: after the fit this should not be the case anymore (slight deviation)

    def test_BW(self):
        "Test bandwidth values."
        Q = rf.Qfactor(self.ntwk_2port.s11, res_type='reflection')
        # before the fit, warnings should be raised
        with self.assertWarns(Warning):
            Q.BW
            Q.BW_scaled