1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
import os
import unittest
import numpy as np
from numpy.testing import assert_allclose, assert_almost_equal, assert_array_equal
import skrf as rf
class QfactorTests(unittest.TestCase):
""" Q-factor class tests.
References
----------
"Q-factor Measurement by using a Vector Network Analyser",
A. P. Gregory, National Physical Laboratory Report MAT 58 (2021)
https://eprintspublications.npl.co.uk/9304/
"""
def setUp(self):
"""
Q-factor tests initializer.
"""
self.test_dir = os.path.dirname(os.path.abspath(__file__)) + "/"
self.ntwk_2port = rf.data.ring_slot
self.ntwk_1port = rf.data.ring_slot_meas
def csv_file_example_to_network(self, file: str) -> rf.Network:
"""Convert the S-parameter txt file to Network.
Parameters
----------
file : str
file path.
Returns
-------
ntwk : rf.Network (1-port)
"""
# Load frequency and S-parameter data from a file.
try:
f, s_re, s_im = np.loadtxt(file, comments="%", unpack=True)
except ValueError:
f, s_re, s_im, s_abs, s_mag = np.loadtxt(file, comments="%", unpack=True)
s = s_re + 1j * s_im
freq = rf.Frequency.from_f(f, unit='GHz')
return rf.Network(s=s, frequency=freq)
def test_constructor(self):
"""
Test the Qfactor() constructor.
"""
# constructor tests
_Q1 = rf.Qfactor(self.ntwk_1port, res_type='reflection')
_Q2 = rf.Qfactor(self.ntwk_1port, res_type='reflection', Q_L0=3)
_Q3 = rf.Qfactor(self.ntwk_1port, res_type='reflection', f_L0=85e9)
_Q3 = rf.Qfactor(self.ntwk_1port, res_type='reflection', Q_L0=3, f_L0=85e9)
def test_exceptions(self):
"Test the raised exceptions."
# Passing a 2-port Network raises a ValueError
self.assertRaises(ValueError, rf.Qfactor, self.ntwk_2port, 'reflection')
# Incorrect resonance type raises a ValueError
self.assertRaises(ValueError, rf.Qfactor, self.ntwk_1port, 'dummy')
# Asking for fitted S-param and Network without prior fit raises a ValueError
_Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
self.assertRaises(ValueError, _Q.fitted_s)
self.assertRaises(ValueError, _Q.fitted_network)
def test_NLQFIT6(self):
"""
Fit FL and QL to transmission (S21) data by using the NLQFIT6 algorithm.
References
----------
Test data is read from file Figure6b.txt (as used in Figure 6(b) of MAT 58).
"""
# File 'Figure6b.txt' contains S21 data for Fig. 6(b) in MAT 58
ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure6b.txt")
Q = rf.Qfactor(ntwk, res_type='transmission', verbose=True)
# Test against expected solutions
assert_almost_equal(Q._a, 0.8104 - 1.6928j, decimal=4)
assert_almost_equal(Q._b, 0.0077 - 0.0071j, decimal=4)
assert_almost_equal(Q.Q_L, 7440.848, decimal=3)
# Optimised weighted fit --> result vector
res = Q.fit(method="NLQFIT6")
# Test against expected solutions
assert_allclose(res.f_L, 3.987848e9)
assert_almost_equal(res.Q_L, 7454, decimal=0)
assert_almost_equal(res.RMS_Error, 0.00001216)
assert_array_equal(res.f_L, Q.f_L)
assert_array_equal(res.Q_L, Q.Q_L)
# Now calculate unloaded Q-factor and some other useful quantities.
# Reciprocal of |S21| of a thru in place of resonator
scaling_factor_A = 1 / 0.874 # 1/|S21_thru|
Q0 = Q.Q_unloaded(res, scaling_factor_A)
cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res, scaling_factor_A)
# Q-factor of uncoupled two-port resonator (unloaded Q-factor)
assert_almost_equal(Q0, 7546, decimal=0)
assert_almost_equal(cal_diam, 0.0121, decimal=4)
# S21 detuned = leakage vector
assert_almost_equal(cal_gamma_V, -0.00008895 + 0.00003852j)
# S21 tuned
assert_almost_equal(cal_gamma_T, 0.00849357 - 0.00845349j)
def test_NLQFIT6_2(self):
"""
Fit FL and QL to transmission (S21) data by using the NLQFIT6 algorithm.
From a two-port superconducting absorption resonator.
References
----------
Test data is read from file Figure27.txt (as used in Figure 27 of MAT 58).
"""
ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure27.txt")
Q = rf.Qfactor(ntwk, res_type='absorption', verbose=True)
# Test against expected solutions
assert_almost_equal(Q._a, -17072.3098 + 9047.0761j, decimal=4)
assert_almost_equal(Q._b, 0.0063 + 0.0168j, decimal=4)
# Q.tol = 1.0e-5 * np.argmax(np.abs(Q.s))
# Step 2: Optimised weighted fit --> result vector
res = Q.fit(method="NLQFIT6")
assert_allclose(res.f_L, 6.07225567e9)
assert_almost_equal(res.Q_L, 56019.85, decimal=0)
assert_almost_equal(res.weighting_ratio, 4.714, decimal=3)
assert_almost_equal(res.RMS_Error, 0.01394722)
assert_allclose(Q.Q_L, res.Q_L)
assert_allclose(Q.f_L, res.f_L)
Q0 = Q.Q_unloaded(res)
cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res)
assert_allclose(Q0, 1846782, rtol=1/100)
assert_allclose(cal_diam, 0.970, rtol=1/100)
assert_almost_equal(2.0 * res.f_L / res.Q_L/1e9, 0.00021678942580071302, decimal=10)
def test_NLQFIT7(self):
"""
Fit FL and QL to reflection (S11) data by using the NLQFIT7 algorithm.
References
----------
Test data is read from file Table6c27.txt (as used in Figure 16 and
Table 6(c) of MAT 58).
"""
ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Table6c27.txt")
Q = rf.Qfactor(ntwk, res_type='reflection', verbose=True)
# Expected results after initial fit
assert_almost_equal(Q._a, 760.9731 + 67.7804j, decimal=4)
assert_almost_equal(Q._b, 0.0609 - 0.6432j, decimal=4)
assert_almost_equal(Q.Q_L, 779.068, decimal=3)
# Expected results after fit
res = Q.fit(method='NLQFIT7')
# Fitted length of uncalibrated line [m]
assert_almost_equal(-res.m7a*rf.c/(4.0*np.pi*1.3), 57.47056249053462e-3)
assert_allclose(Q.f_L, 3.65293800e9)
assert_almost_equal(Q.Q_L, 708, decimal=0)
# Unloaded Q-factor and some other useful quantities.
print("Q-factor of unloaded one-port resonator by Method 1:")
print("Assumes attenuating uncalibrated line")
Q0 = Q.Q_unloaded(res)
cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res)
# Test against expected solutions
assert_almost_equal(Q0, 862, decimal=0)
assert_almost_equal(cal_diam, 0.3573, decimal=4)
assert_almost_equal(cal_gamma_V, 0.09084890 - 0.99586469j) # S11 detuned
assert_almost_equal(cal_gamma_T, 0.05878773 - 0.64003179j) # S11 tuned
print("Q-factor of unloaded one-port resonator by Method 2:")
print("Scaling factor A = 1.0 (assume no attenuation in uncalibrated line)")
Q2 = rf.Qfactor(ntwk, res_type='reflection_method2', verbose=True)
res2 = Q2.fit(method='NLQFIT7')
Q0_2 = Q.Q_unloaded(res2, A=1)
cal_diam2, cal_gamma_V2, cal_gamma_T2 = Q.Q_circle(res2, A=1)
# Test against expected solutions
assert_almost_equal(Q0_2, 862, decimal=0)
assert_almost_equal(res2.weighting_ratio, 28.317, decimal=3)
assert_almost_equal(res2.RMS_Error, 0.00145957)
assert_almost_equal(cal_diam2, 0.3573, decimal=2)
assert_almost_equal(cal_gamma_V2, 0.08996562 - 0.98618239j)
assert_almost_equal(cal_gamma_T2, 0.05821616 - 0.63380908j)
def test_NLQFIT8(self):
"""
Fits to transmission (S21) data by using the NLQFIT8 algorithm.
frequency-dependent leakage
References
----------
Test data is read from file Figure23.txt (shown in Figure 23 of MAT 58)
"""
ntwk = self.csv_file_example_to_network(self.test_dir + "qfactor_data/Figure23.txt")
Q = rf.Qfactor(ntwk, res_type='transmission')
# # De-embed cables
# N = len(Q.f)
ncablelen = 1.2 # root_eps * cable length in metres
# D = ntwk.s[:,0,0]* np.exp(-1j * 2*np.pi *Q.f * ncablelen / rf.c)
# ntwk2 = ntwk.copy()
# ntwk2.s[:,0,0] = D
# piece of transmission line to deembbed
gamma = 0 - 1j*ntwk.frequency.w * ncablelen / rf.c
coax = rf.media.DefinedGammaZ0(frequency=ntwk.frequency, gamma=gamma)
line = coax.line(1/2, unit='m')
ntwk2 = line.inv ** ntwk
# Find peak in |S21| - this is used to give initial value of freq.
# Tol is 1.0E-5 * |S21| at peak.
Mg = np.abs(ntwk2.s).squeeze()
index_max = np.argmax(Mg)
Fseed = Q.f[index_max]
# Set Qseed: An order-of-magnitude estimate for Q-factor
mult = 5.0 # Not critical. A value of around 5.0 will work well for initial and optimised fits (Section 2.6).
Qseed = mult * Fseed / (Q.f[-1] - Q.f[0])
Q = rf.Qfactor(ntwk2, res_type='transmission', Q_L0=Qseed, f_L0=Fseed)
assert_almost_equal(Q._a, 8.9408 + 2.1298j, decimal=4)
assert_almost_equal(Q._b, 0.0054 - 0.0045j, decimal=4)
assert_almost_equal(Q.Q_L, 4664.2418, decimal=3)
# Step 2: Optimised weighted fit
res = Q.fit(method="NLQFIT8", loop_plan="fwfwfwc")
# Unloaded Q-factor and some other useful quantities.
# Reciprocal of |S21| of a thru in place of resonator
scaling_factor_A = 1 / 0.949 # 1/|S21_thru|
Q0 = Q.Q_unloaded(res, scaling_factor_A)
cal_diam, cal_gamma_V, cal_gamma_T = Q.Q_circle(res, scaling_factor_A)
# Test against expected solutions
assert_allclose(Q.f_L, 9.76015571e9)
assert_almost_equal(Q.Q_L, 4760.04, decimal=0)
assert_almost_equal(Q0, 4789.49, decimal=0)
assert_almost_equal(res.weighting_ratio, 5.078, decimal=3)
assert_almost_equal(res.RMS_Error, 0.00000910)
assert_almost_equal(cal_diam, 0.0061, decimal=2)
def test_Q_unloaded(self):
"""Test unloaded Q factor method."""
Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
res = Q.fit()
self.assertRaises(ValueError, Q.Q_unloaded, A='dummy')
self.assertRaises(ValueError, Q.Q_unloaded, A=1j)
self.assertRaises(ValueError, Q.Q_unloaded, res, A='dummy')
self.assertRaises(ValueError, Q.Q_unloaded, res, A=1j)
# passing of not the fitted results after fit should be the same
self.assertEqual(Q.Q_unloaded(res), Q.Q_unloaded())
# passing a different solution should lead to different values
res2 = Q.fit(method="NLQFIT7")
self.assertNotEqual(Q.Q_unloaded(res), Q.Q_unloaded(res2))
def test_Q_circle(self):
"""Test Q-circle method."""
Q = rf.Qfactor(self.ntwk_1port, res_type='reflection')
res = Q.fit(method="NLQFIT6")
self.assertRaises(ValueError, Q.Q_circle, A='dummy')
self.assertRaises(ValueError, Q.Q_circle, A=1j)
self.assertRaises(ValueError, Q.Q_circle, res, A='dummy')
self.assertRaises(ValueError, Q.Q_circle, res, A=1j)
# passing of not the fitted results after fit should be the same
self.assertEqual(Q.Q_circle(res), Q.Q_circle())
# passing a different solution should lead to different values
res2 = Q.fit(method="NLQFIT7")
self.assertNotEqual(Q.Q_circle(res), Q.Q_circle(res2))
def test_f_L(self):
"Test resonant frequency values."
# expected values
f_L_expected = self.ntwk_2port.f[np.argmin(self.ntwk_2port.s11.s_mag)]
f_L_expected_scaled = f_L_expected/self.ntwk_2port.frequency.multiplier
# fitted values
Q = rf.Qfactor(self.ntwk_2port.s11, res_type='reflection')
# before the fit, warnings should be raised
with self.assertWarns(Warning):
# the resonance frequency corresponds to min value before fitting
assert_almost_equal(Q.f_L, f_L_expected)
assert_almost_equal(Q.f_L_scaled, f_L_expected_scaled)
# NB: after the fit this should not be the case anymore (slight deviation)
def test_BW(self):
"Test bandwidth values."
Q = rf.Qfactor(self.ntwk_2port.s11, res_type='reflection')
# before the fit, warnings should be raised
with self.assertWarns(Warning):
Q.BW
Q.BW_scaled
|