1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
"""
.. module:: skrf.time
========================================
time (:mod:`skrf.time`)
========================================
Time domain functions
.. autosummary::
:toctree: generated/
time_gate
detect_span
find_n_peaks
indexes
get_window
"""
from __future__ import annotations
import warnings
from collections.abc import Callable
# imports for type hinting
from typing import TYPE_CHECKING
import numpy as np
from numpy.fft import fft, fftshift, ifft, ifftshift, irfft, rfft
from scipy import signal
from scipy.ndimage import convolve1d
from .util import find_nearest_index
if TYPE_CHECKING:
from .network import Network
def indexes(y: np.ndarray, thres: float = 0.3, min_dist: int = 1) -> np.ndarray:
"""
Peak detection routine.
Finds the numeric index of the peaks in *y* by taking its first order difference. By using
*thres* and *min_dist* parameters, it is possible to reduce the number of
detected peaks. *y* must be signed.
Parameters
----------
y : ndarray (signed)
1D amplitude data to search for peaks.
thres : float between [0., 1.], optional
Normalized threshold. Only the peaks with amplitude higher than the
threshold will be detected. Default is 0.3
min_dist : int, optional
Minimum distance between each detected peak. The peak with the highest
amplitude is preferred to satisfy this constraint. Default is 1
Returns
-------
ndarray
Array containing the numeric indexes of the peaks that were detected
Notes
-----
This function was taken from peakutils-1.1.0
http://pythonhosted.org/PeakUtils/index.html
"""
#This function was taken from peakutils, and is covered
# by the MIT license, included below:
#The MIT License (MIT)
#Copyright (c) 2014 Lucas Hermann Negri
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#The above copyright notice and this permission notice shall be included in
#all copies or substantial portions of the Software.
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#THE SOFTWARE.
if isinstance(y, np.ndarray) and np.issubdtype(y.dtype, np.unsignedinteger):
raise ValueError("y must be signed")
thres = thres * (np.max(y) - np.min(y)) + np.min(y)
min_dist = int(min_dist)
# compute first order difference
dy = np.diff(y)
# propagate left and right values successively to fill all plateau pixels (0-value)
zeros, = np.where(dy == 0)
# check if the singal is totally flat
if len(zeros) == len(y) - 1:
return np.array([])
while len(zeros):
# add pixels 2 by 2 to propagate left and right value onto the zero-value pixel
zerosr = np.hstack([dy[1:], 0.])
zerosl = np.hstack([0., dy[:-1]])
# replace 0 with right value if non zero
dy[zeros]=zerosr[zeros]
zeros, = np.where(dy == 0)
# replace 0 with left value if non zero
dy[zeros] = zerosl[zeros]
zeros, = np.where(dy == 0)
# find the peaks by using the first order difference
peaks = np.where((np.hstack([dy, 0.]) < 0.)
& (np.hstack([0., dy]) > 0.)
& (y > thres))[0]
# handle multiple peaks, respecting the minimum distance
if peaks.size > 1 and min_dist > 1:
highest = peaks[np.argsort(y[peaks])][::-1]
rem = np.ones(y.size, dtype=bool)
rem[peaks] = False
for peak in highest:
if not rem[peak]:
sl = slice(max(0, peak - min_dist), peak + min_dist + 1)
rem[sl] = True
rem[peak] = False
peaks = np.arange(y.size)[~rem]
return peaks
def find_n_peaks(x: np.ndarray, n: int, thres: float = 0.9, **kwargs) -> list[int]:
"""
Find a given number of peaks in a signal.
Parameters
----------
x : np.ndarray
signal
n : int
number of peaks to search for
thres : float, optional
threshold, default is 0.9
**kwargs : optional keyword arguments passed to :func:`indexes`
Returns
-------
peak_idxs : list of int
List containing the numeric indexes of the peaks that were detected
Raises
------
ValueError
If no peaks are found.
"""
for _dummy in range(10):
idx = indexes(x, **kwargs)
if len(idx) < n:
thres *= .5
else:
peak_vals = sorted(x[idx], reverse=True)[:n]
peak_idxs = [x.tolist().index(k) for k in peak_vals]
return peak_idxs
raise ValueError('Couldnt find %i peaks' % n)
time_lookup_dict = {
"s": 1,
"ms": 1e-3,
"us": 1e-6,
"µs": 1e-6,
"ns": 1e-9,
"ps": 1e-12
}
def detect_span(ntwk: Network, t_unit: str = "") -> float:
"""
Detect the correct time-span between two largest peaks.
Parameters
----------
ntwk : :class:`~skrf.network.Network`
network to get data from
t_unit : str
Time unit for start, stop, center and span arguments, defaults to seconds (s).
Possible values:
* 's': seconds
* 'ms': milliseconds
* 'µs' or 'us': microseconds
* 'ns': nanoseconds (default)
* 'ps': picoseconds
Returns
-------
span : float in unit t_unit
"""
if t_unit == "":
# Do not raise in autogate mode, where all parameters are None
warnings.warn('''
Time unit not passed: uses 's' per default.
''',
DeprecationWarning, stacklevel=2)
t_unit = 's'
x = ntwk.s_time_db.flatten()
p1, p2 = find_n_peaks(x, n=2)
# distance to nearest neighbor peak
span = abs(ntwk.frequency.t[p1]-ntwk.frequency.t[p2])
return span / time_lookup_dict[t_unit]
def get_window(window: str | tuple | Callable, Nx: int, **kwargs) -> np.ndarray:
"""Calls a custom window function or `scipy.signal.get_window()` depending on the window argument.
Parameters
----------
window : str, tuple or Callable
The callable window function or a valid window string
for `scipy.signal.get_window()`.
Nx : int
Number of samples
Returns
-------
window : np.ndarray
Window samples.
"""
if callable(window):
return window(Nx, **kwargs)
else:
return signal.get_window(window, Nx=Nx, **kwargs)
def time_gate(ntwk: Network, start: float = None, stop: float = None, center: float = None, span: float = None,
mode: str = 'bandpass', window=('kaiser', 6),
method: str ='fft', fft_window: str='cosine', conv_mode: str='wrap', t_unit: str = "") -> Network:
"""
Time-domain gating of one-port s-parameters with a window function from scipy.signal.windows.
The gate can be defined with start/stop times, or by center/span. All times are in units of seconds but
can be changed using the `t_unit` parameter.
Common windows are:
* ('kaiser', 6)
* 6 # integers are interpreted as kaiser beta-values
* 'hamming'
* 'boxcar' # a straight up rect
* Callable function which accepts integer with window size as argument
If no parameters are passed this will try to auto-gate the largest
peak.
Parameters
----------
ntwk : :class:`~skrf.network.Network`
network to operate on
start : number, or None
start of time gate in t_unit.
stop : number, or None
stop of time gate in t_unit.
center : number, or None
center of time gate, in t_unit. If None, and span is given,
the gate will be centered on the peak.
span : number, or None
span of time gate, in t_unit. If None span will be half of the
distance to the second tallest peak
mode : ['bandpass', 'bandstop']
mode of gate
window : string, float, or tuple
passed to `window` arg of `scipy.signal.get_window()` or callable function
method : str
Gating method. There are 3 option: 'convolution', 'fft', 'rfft'.
With *'convolution'*, the time-domain gate gets transformed into frequency-domain using inverse FFT and the
gating is then achieved by convolution with the frequency-domain data.
With *'fft'* (default), the data gets transformed into time-domain using inverse FFT and the gating is achieved
by multiplication with the time-domain gate. The gated time-domain signal is then transformed back into
frequency-domain using FFT. As only positive signal frequencies are considered for the inverse FFT
(with or without a dc component), the resulting time-domain signal has the same number of samples as in the
frequency-domain, but is complex-valued. This method is also know as *time-domain band-pass mode*.
With *'rfft'*, the procedure is the same as with *'fft'*, but the inverse FFT uses a complex-conjugate copy of
the positive signal frequencies for the negative frequencies (Hermitian frequency response). A dc sample is
also required. The resulting time-domain signal is real-valued and has twice the number of samples, which gives
an improved time resolution. This method is also known as *time-domain low-pass mode*.
fft_window : str or tuple or None
Frequency-domain window applied before the inverse FFT in case of the (R)FFT method.
This parameter takes the same values as the `window` parameter.
Example: `window='hann` (default), or `window=('kaiser', 5)`, or `window=None`.
The window helps to remove artefacts such as time-domain sidelobes of the pulses, but it is a trade-off with
the achievable pulse width. The window is removed when the gated time-domain signals is transformed back into
frequency-domain.
conv_mode : str
Extension mode for the convolution (if selected) determining how the frequency-domain gate is extended beyond
the boundaries. This has a large effect on the generation of gating artefacts due to boundary effects. The
optimal mode depends on the data. See the parameter description of `scipy.ndimage.convolve1d` for the available
options.
t_unit : str
Time unit for start, stop, center and span arguments, defaults to seconds (s).
Possible values:
* 's': seconds (default)
* 'ms': milliseconds
* 'µs' or 'us': microseconds
* 'ns': nanoseconds
* 'ps': picoseconds
Note
----
You can't gate things that are 'behind' strong reflections. This
is due to the multiple reflections that occur.
If you need to time-gate an N-port network, then you should
gate each s-parameter independently.
Returns
-------
ntwk : Network
copy of ntwk with time-gated s-parameters
.. warning::
Depending on sharpness of the gate, the band edges may be
inaccurate, due to properties of FFT. We do not re-normalize
anything.
"""
if ntwk.nports >1:
raise ValueError('Time-gating only works on one-ports. Try passing `ntwk.s11` or `ntwk.s21`.')
if t_unit == "":
if not all([e is None for e in [start, stop, center, span]]):
# Do not raise in autogate mode, where all parameters are None
warnings.warn('''
Time unit not passed: uses 's' per default.
''',
DeprecationWarning, stacklevel=2)
t_unit = 's'
t_mult = time_lookup_dict[t_unit]
if start is not None and stop is not None:
start *= t_mult
stop *= t_mult
span = abs(stop-start)
center = (stop+start)/2.
else:
if center is None:
# they didn't provide center, so find the peak
n = ntwk.s_time_mag.argmax()
center = ntwk.frequency.t_ns[n]
if span is None:
span = detect_span(ntwk, t_unit='ns')
center *= t_mult
span *= t_mult
start = center - span / 2.
stop = center + span / 2.
ntwk_gated = ntwk.copy()
method = method.lower()
n_fd = ntwk.frequency.npoints
df = ntwk.frequency.step
if method == 'convolution':
# frequency-domain gating
n_td = n_fd
# create dummy-window
window_fd = np.ones(n_fd)
elif method == 'fft':
# time-domain band-pass mode
n_td = n_fd
if fft_window is not None:
# create band-pass window (zero on both lower and upper limit, one at center)
window_fd = get_window(fft_window, n_fd)
else:
# create dummy-window
window_fd = np.ones(n_fd)
elif method == 'rfft':
# time-domain low-pass mode
if ntwk.f[0] > 0.0:
# no dc point included
warnings.warn('The network data to be gated does not contain the dc point (0 Hz). This is required for the '
'selected low-pass gating mode. Please consider to include the dc point if the results are '
'inaccurate, either by direct measurement of by extrapolation using '
'skrf.Network.extrapolate_to_dc().', UserWarning, stacklevel=2)
n_td = 2 * n_fd - 1
if fft_window is not None:
# create low-pass window (one at lower limit at f=0, zero on upper limit)
window_fd = get_window(fft_window, 2 * n_fd)
window_fd = window_fd[n_fd:]
else:
# create dummy-window
window_fd = np.ones(n_fd)
else:
raise ValueError(f'Invalid parameter method=`{method}`')
# apply frequency-domain window
ntwk_gated.s[:, 0, 0] = ntwk_gated.s[:, 0, 0] * window_fd
# create time vector
t = np.fft.fftshift(np.fft.fftfreq(n_td, df))
# find start/stop gate indices
start_idx = find_nearest_index(t, start)
stop_idx = find_nearest_index(t, stop)
# create gating window
window_width = abs(stop_idx - start_idx) + 1
window = get_window(window, window_width)
# create the gate by padding the window with zeros
gate = np.zeros_like(t)
gate[start_idx:stop_idx+1] = window
if method == 'convolution':
# frequency-domain gating
kernel = fftshift(fft(ifftshift(gate), norm='forward'))
ntwk_gated.s[:, 0, 0] = convolve1d(ntwk_gated.s[:, 0, 0], kernel, mode=conv_mode)
elif method == 'fft':
# time-domain band-pass mode
s_td = fftshift(ifft(ntwk_gated.s[:, 0, 0]))
s_td_g = s_td * gate
ntwk_gated.s[:, 0, 0] = fft(ifftshift(s_td_g))
elif method == 'rfft':
# time-domain low-pass mode
s_td = fftshift(irfft(ntwk_gated.s[:, 0, 0], n=len(t)))
s_td_g = s_td * gate
ntwk_gated.s[:, 0, 0] = rfft(ifftshift(s_td_g))
# remove frequency-domain window
ntwk_gated.s[:, 0, 0] = ntwk_gated.s[:, 0, 0] / window_fd
if mode == 'bandstop':
ntwk_gated = ntwk - ntwk_gated
elif mode == 'bandpass':
pass
else:
raise ValueError('mode should be \'bandpass\' or \'bandstop\'')
return ntwk_gated
|