1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
r"""
.. module:: skrf.tlineFunctions
===============================================
tlineFunctions (:mod:`skrf.tlineFunctions`)
===============================================
This module provides functions related to transmission line theory.
Impedance and Reflection Coefficient
--------------------------------------
These functions relate basic transmission line quantities such as
characteristic impedance, input impedance, reflection coefficient, etc.
Each function has two names. One is a long-winded but readable name and
the other is a short-hand variable-like names. Below is a table relating
these two names with each other as well as common mathematical symbols.
==================== ====================== ================================
Symbol Variable Name Long Name
==================== ====================== ================================
:math:`Z_l` z_l load_impedance
:math:`Z_{in}` z_in input_impedance
:math:`\Gamma_0` Gamma_0 reflection_coefficient
:math:`\Gamma_{in}` Gamma_in reflection_coefficient_at_theta
:math:`\theta` theta electrical_length
==================== ====================== ================================
There may be a bit of confusion about the difference between the load
impedance the input impedance. This is because the load impedance **is**
the input impedance at the load. An illustration may provide some
useful reference.
Below is a (bad) illustration of a section of uniform transmission line
of characteristic impedance :math:`Z_0`, and electrical length
:math:`\theta`. The line is terminated on the right with some
load impedance, :math:`Z_l`. The input impedance :math:`Z_{in}` and
input reflection coefficient :math:`\Gamma_{in}` are
looking in towards the load from the distance :math:`\theta` from the
load.
.. math::
Z_0, \theta
\text{o===============o=}[Z_l]
\to\qquad\qquad\qquad\quad\qquad \qquad \to \qquad \quad
Z_{in},\Gamma_{in}\qquad\qquad\qquad\qquad\quad Z_l,\Gamma_0
So, to clarify the confusion,
.. math::
Z_{in}= Z_{l},\qquad\qquad
\Gamma_{in}=\Gamma_l \text{ at } \theta=0
Short names
+++++++++++++
.. autosummary::
:toctree: generated/
theta
zl_2_Gamma0
zl_2_zin
zl_2_Gamma_in
zl_2_swr
zl_2_total_loss
Gamma0_2_zl
Gamma0_2_Gamma_in
Gamma0_2_zin
Gamma0_2_swr
Long-names
++++++++++++++
.. autosummary::
:toctree: generated/
electrical_length
distance_2_electrical_length
electrical_length_2_distance
reflection_coefficient_at_theta
reflection_coefficient_2_input_impedance
reflection_coefficient_2_input_impedance_at_theta
reflection_coefficient_2_propagation_constant
input_impedance_at_theta
load_impedance_2_reflection_coefficient
load_impedance_2_reflection_coefficient_at_theta
voltage_current_propagation
Distributed Circuit and Wave Quantities
----------------------------------------
.. autosummary::
:toctree: generated/
distributed_circuit_2_propagation_impedance
propagation_impedance_2_distributed_circuit
Transmission Line Physics
---------------------------------
.. autosummary::
:toctree: generated/
skin_depth
surface_resistivity
"""
import numpy as np
from numpy import array, exp, pi, real, sqrt
from scipy.constants import mu_0
from . import mathFunctions as mf
from .constants import INF, ONE, NumberLike
def skin_depth(f: NumberLike, rho: float, mu_r: float):
r"""
Skin depth for a material.
The skin depth is calculated as:
.. math::
\delta = \sqrt{\frac{ \rho }{ \pi f \mu_r \mu_0 }}
See www.microwaves101.com [#]_ or wikipedia [#]_ for more info.
Parameters
----------
f : number or array-like
frequency, in Hz
rho : number of array-like
bulk resistivity of material, in ohm*m
mu_r : number or array-like
relative permeability of material
Returns
-------
skin depth : number or array-like
the skin depth, in meter
References
----------
.. [#] https://www.microwaves101.com/encyclopedias/skin-depth
.. [#] http://en.wikipedia.org/wiki/Skin_effect
See Also
--------
surface_resistivity
"""
return sqrt(rho/(pi*f*mu_r*mu_0))
def surface_resistivity(f: NumberLike, rho: float, mu_r: float):
r"""
Surface resistivity.
The surface resistivity is calculated as:
.. math::
\frac{ \rho }{ \delta }
where :math:`\delta` is the skin depth from :func:`skin_depth`.
See www.microwaves101.com [#]_ or wikipedia [#]_ for more info.
Parameters
----------
f : number or array-like
frequency, in Hz
rho : number or array-like
bulk resistivity of material, in ohm*m
mu_r : number or array-like
relative permeability of material
Returns
-------
surface resistivity : number of array-like
Surface resistivity in ohms/square
References
----------
.. [#] https://www.microwaves101.com/encyclopedias/sheet-resistance
.. [#] https://en.wikipedia.org/wiki/Sheet_resistance
See Also
--------
skin_depth
"""
return rho/skin_depth(rho=rho, f=f, mu_r=mu_r)
def distributed_circuit_2_propagation_impedance(distributed_admittance: NumberLike,
distributed_impedance: NumberLike):
r"""
Convert distributed circuit values to wave quantities.
This converts complex distributed impedance and admittance to
propagation constant and characteristic impedance. The relation is
.. math::
Z_0 = \sqrt{ \frac{Z^{'}}{Y^{'}}}
\quad\quad
\gamma = \sqrt{ Z^{'} Y^{'}}
Parameters
----------
distributed_admittance : number, array-like
distributed admittance
distributed_impedance : number, array-like
distributed impedance
Returns
-------
propagation_constant : number, array-like
distributed impedance
characteristic_impedance : number, array-like
distributed impedance
See Also
--------
propagation_impedance_2_distributed_circuit : opposite conversion
"""
propagation_constant = \
sqrt(distributed_impedance*distributed_admittance)
characteristic_impedance = \
sqrt(distributed_impedance/distributed_admittance)
return (propagation_constant, characteristic_impedance)
def propagation_impedance_2_distributed_circuit(propagation_constant: NumberLike,
characteristic_impedance: NumberLike):
r"""
Convert wave quantities to distributed circuit values.
Convert complex propagation constant and characteristic impedance
to distributed impedance and admittance. The relation is,
.. math::
Z^{'} = \gamma Z_0 \quad\quad
Y^{'} = \frac{\gamma}{Z_0}
Parameters
----------
propagation_constant : number, array-like
distributed impedance
characteristic_impedance : number, array-like
distributed impedance
Returns
-------
distributed_admittance : number, array-like
distributed admittance
distributed_impedance : number, array-like
distributed impedance
See Also
--------
distributed_circuit_2_propagation_impedance : opposite conversion
"""
distributed_admittance = propagation_constant/characteristic_impedance
distributed_impedance = propagation_constant*characteristic_impedance
return (distributed_admittance, distributed_impedance)
def electrical_length(gamma: NumberLike, f: NumberLike, d: NumberLike, deg: bool = False):
r"""
Electrical length of a section of transmission line.
.. math::
\theta = \gamma(f) \cdot d
Parameters
----------
gamma : number, array-like or function
propagation constant. See Notes.
If passed as a function, takes frequency in Hz as a sole argument.
f : number or array-like
frequency at which to calculate
d : number or array-like
length of line, in meters
deg : Boolean
return in degrees or not.
Returns
-------
theta : number or array-like
electrical length in radians or degrees, depending on value of deg.
See Also
--------
electrical_length_2_distance : opposite conversion
Note
----
The convention has been chosen that forward propagation is
represented by the positive imaginary part of the value returned by
the gamma function.
"""
# if gamma is not a function, create a dummy function which return gamma
if not callable(gamma):
_gamma = gamma
def gamma(f0): return _gamma
# typecast to a 1D array
f = array(f, dtype=float).reshape(-1)
d = array(d, dtype=float).reshape(-1)
if not deg:
return gamma(f)*d
else:
return mf.radian_2_degree(gamma(f)*d )
def electrical_length_2_distance(theta: NumberLike, gamma: NumberLike, f0: NumberLike, deg: bool = True):
r"""
Convert electrical length to a physical distance.
.. math::
d = \frac{\theta}{\gamma(f_0)}
Parameters
----------
theta : number or array-like
electrical length. units depend on `deg` option
gamma : number, array-like or function
propagation constant. See Notes.
If passed as a function, takes frequency in Hz as a sole argument.
f0 : number or array-like
frequency at which to calculate gamma
deg : Boolean
return in degrees or not.
Returns
-------
d : number or array-like (real)
physical distance in m
Note
----
The convention has been chosen that forward propagation is
represented by the positive imaginary part of the value returned by
the gamma function.
See Also
--------
distance_2_electrical_length: opposite conversion
"""
# if gamma is not a function, create a dummy function which return gamma
if not callable(gamma):
_gamma = gamma
def gamma(f0): return _gamma
if deg:
theta = mf.degree_2_radian(theta)
return real(theta / gamma(f0))
def load_impedance_2_reflection_coefficient(z0: NumberLike, zl: NumberLike):
r"""
Reflection coefficient from a load impedance.
Return the reflection coefficient for a given load impedance, and
characteristic impedance.
For a transmission line of characteristic impedance :math:`Z_0`
terminated with load impedance :math:`Z_l`, the complex reflection
coefficient is given by,
.. math::
\Gamma = \frac {Z_l - Z_0}{Z_l + Z_0}
Parameters
----------
z0 : number or array-like
characteristic impedance
zl : number or array-like
load impedance (aka input impedance)
Returns
-------
gamma : number or array-like
reflection coefficient
See Also
--------
Gamma0_2_zl : reflection coefficient to load impedance
Note
----
Inputs are typecasted to 1D complex array.
"""
# typecast to a complex 1D array. this makes everything easier
z0 = array(z0, dtype=complex).reshape(-1)
zl = array(zl, dtype=complex).reshape(-1)
# handle singularity by numerically representing inf as big number
zl[(zl == np.inf)] = INF
return ((zl - z0)/(zl + z0))
def reflection_coefficient_2_input_impedance(z0: NumberLike, Gamma: NumberLike):
r"""
Input impedance from a load reflection coefficient.
Calculate the input impedance given a reflection coefficient and
characteristic impedance.
.. math::
Z_0 \left(\frac {1 + \Gamma}{1-\Gamma} \right)
Parameters
----------
Gamma : number or array-like
complex reflection coefficient
z0 : number or array-like
characteristic impedance
Returns
-------
zin : number or array-like
input impedance
"""
# typecast to a complex 1D array. this makes everything easier
Gamma = array(Gamma, dtype=complex).reshape(-1)
z0 = array(z0, dtype=complex).reshape(-1)
# handle singularity by numerically representing inf as close to 1
Gamma[(Gamma == 1)] = ONE
return z0*((1.0 + Gamma)/(1.0 - Gamma))
def reflection_coefficient_at_theta(Gamma0: NumberLike, theta: NumberLike):
r"""
Reflection coefficient at a given electrical length.
.. math::
\Gamma_{in} = \Gamma_0 e^{-2 \theta}
Parameters
----------
Gamma0 : number or array-like
reflection coefficient at theta=0
theta : number or array-like
electrical length (may be complex)
Returns
-------
Gamma_in : number or array-like
input reflection coefficient
"""
Gamma0 = array(Gamma0, dtype=complex).reshape(-1)
theta = array(theta, dtype=complex).reshape(-1)
return Gamma0 * exp(-2*theta)
def input_impedance_at_theta(z0: NumberLike, zl: NumberLike, theta: NumberLike):
"""
Input impedance from load impedance at a given electrical length.
Input impedance of load impedance zl at a given electrical length,
given characteristic impedance z0.
Parameters
----------
z0 : number or array-like
characteristic impedance
zl : number or array-like
load impedance
theta : number or array-like
electrical length of the line (may be complex)
Returns
-------
zin : number or array-like
input impedance at theta
"""
Gamma0 = load_impedance_2_reflection_coefficient(z0=z0, zl=zl)
Gamma_in = reflection_coefficient_at_theta(Gamma0=Gamma0, theta=theta)
return reflection_coefficient_2_input_impedance(z0=z0, Gamma=Gamma_in)
def load_impedance_2_reflection_coefficient_at_theta(z0: NumberLike, zl: NumberLike, theta: NumberLike):
"""
Reflection coefficient of load at a given electrical length.
Reflection coefficient of load impedance zl at a given electrical length,
given characteristic impedance z0.
Parameters
----------
z0 : number or array-like
characteristic impedance.
zl : number or array-like
load impedance
theta : number or array-like
electrical length of the line (may be complex).
Returns
-------
Gamma_in : number or array-like
input reflection coefficient at theta
"""
Gamma0 = load_impedance_2_reflection_coefficient(z0=z0, zl=zl)
Gamma_in = reflection_coefficient_at_theta(Gamma0=Gamma0, theta=theta)
return Gamma_in
def reflection_coefficient_2_input_impedance_at_theta(z0: NumberLike, Gamma0: NumberLike, theta: NumberLike):
"""
Input impedance from load reflection coefficient at a given electrical length.
Calculate the input impedance at electrical length theta, given a
reflection coefficient and characteristic impedance of the medium.
Parameters
----------
z0 : number or array-like
characteristic impedance.
Gamma: number or array-like
reflection coefficient
theta: number or array-like
electrical length of the line, (may be complex)
Returns
-------
zin: number or array-like
input impedance at theta
"""
Gamma_in = reflection_coefficient_at_theta(Gamma0=Gamma0, theta=theta)
zin = reflection_coefficient_2_input_impedance(z0=z0, Gamma=Gamma_in)
return zin
def reflection_coefficient_2_propagation_constant(Gamma_in: NumberLike, Gamma_l: NumberLike, d: NumberLike):
r"""
Propagation constant from line input and load reflection coefficients.
Calculate the propagation constant of a line of length d, given the
reflection coefficient and characteristic impedance of the medium.
.. math::
\Gamma_{in} = \Gamma_l e^{-2 j \gamma \cdot d}
\to \gamma = -\frac{1}{2 d} \ln \left ( \frac{ \Gamma_{in} }{ \Gamma_l } \right )
Parameters
----------
Gamma_in : number or array-like
input reflection coefficient
Gamma_l : number or array-like
load reflection coefficient
d : number or array-like
length of line, in meters
Returns
-------
gamma : number (complex) or array-like
propagation constant (see notes)
Note
----
The convention has been chosen that forward propagation is
represented by the positive imaginary part of gamma.
"""
gamma = -1/(2*d) * np.log(Gamma_in/Gamma_l)
# the imaginary part of gamma (=beta) cannot be negative with the given
# definition of gamma. Thus one should take the first modulo positive value
gamma.imag = gamma.imag % (pi/d)
return gamma
def Gamma0_2_swr(Gamma0: NumberLike):
r"""
Standing Wave Ratio (SWR) for a given reflection coefficient.
Standing Wave Ratio value is defined by:
.. math::
VSWR = \frac{1 + |\Gamma_0|}{1 - |\Gamma_0|}
Parameters
----------
Gamma0 : number or array-like
Reflection coefficient
Returns
-------
swr : number or array-like
Standing Wave Ratio.
"""
return (1 + np.abs(Gamma0)) / (1 - np.abs(Gamma0))
def zl_2_swr(z0: NumberLike, zl: NumberLike):
r"""
Standing Wave Ratio (SWR) for a given load impedance.
Standing Wave Ratio value is defined by:
.. math::
VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|}
where
.. math::
\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}
Parameters
----------
z0 : number or array-like
line characteristic impedance [Ohm]
zl : number or array-like
load impedance [Ohm]
Returns
-------
swr : number or array-like
Standing Wave Ratio.
"""
Gamma0 = load_impedance_2_reflection_coefficient(z0, zl)
return Gamma0_2_swr(Gamma0)
def voltage_current_propagation(v1: NumberLike, i1: NumberLike, z0: NumberLike, theta: NumberLike):
"""
Voltages and currents calculated on electrical length theta of a transmission line.
Give voltage v2 and current i1 at theta, given voltage v1
and current i1 at theta=0 and given characteristic parameters gamma and z0.
::
i1 i2
○-->---------------------->--○
v1 gamma,z0 v2
○----------------------------○
<------------ d ------------->
theta=0 theta
Uses (inverse) ABCD parameters of a transmission line.
Parameters
----------
v1 : array-like (nfreqs,)
total voltage at z=0
i1 : array-like (nfreqs,)
total current at z=0, directed toward the transmission line
z0: array-like (nfreqs,)
characteristic impedance
theta : number or array-like (nfreq, ntheta)
electrical length of the line (may be complex).
Return
------
v2 : array-like (nfreqs, ntheta)
total voltage at z=d
i2 : array-like (nfreqs, ndtheta
total current at z=d, directed outward the transmission line
"""
# outer product by broadcasting of the electrical length
# theta = gamma[:, np.newaxis] * d # (nbfreqs x nbd)
# ABCD parameters of a transmission line (gamma, z0)
A = np.cosh(theta)
B = z0*np.sinh(theta)
C = np.sinh(theta)/z0
D = np.cosh(theta)
# transpose and de-transpose operations are necessary
# for linalg.inv to inverse square matrices
ABCD = np.array([[A, B],[C, D]]).transpose()
inv_ABCD = np.linalg.inv(ABCD).transpose()
v2 = inv_ABCD[0,0] * v1 + inv_ABCD[0,1] * i1
i2 = inv_ABCD[1,0] * v1 + inv_ABCD[1,1] * i1
return v2, i2
def zl_2_total_loss(z0: NumberLike, zl: NumberLike, theta: NumberLike):
r"""
Total loss of a terminated transmission line (in natural unit).
The total loss expressed in terms of the load impedance is [#]_ :
.. math::
TL = \frac{R_{in}}{R_L} \left| \cosh \theta + \frac{Z_L}{Z_0} \sinh\theta \right|^2
Parameters
----------
z0 : number or array-like
characteristic impedance.
zl : number or array-like
load impedance
theta : number or array-like
electrical length of the line (may be complex).
Returns
-------
total_loss: number or array-like
total loss in natural unit
References
----------
.. [#] Steve Stearns (K6OIK), Transmission Line Power Paradox and Its Resolution.
ARRL PacificonAntenna Seminar, Santa Clara, CA, October 10-12, 2014.
https://www.fars.k6ya.org/docs/K6OIK-A_Transmission_Line_Power_Paradox_and_Its_Resolution.pdf
"""
Rin = np.real(zl_2_zin(z0, zl, theta))
total_loss = Rin/np.real(zl)*np.abs(np.cosh(theta) + zl/z0*np.sinh(theta))**2
return total_loss
# short hand convenience.
# admittedly these follow no logical naming scheme, but they closely
# correspond to common symbolic conventions, and are convenient
theta = electrical_length
distance_2_electrical_length = electrical_length
zl_2_Gamma0 = load_impedance_2_reflection_coefficient
Gamma0_2_zl = reflection_coefficient_2_input_impedance
zl_2_zin = input_impedance_at_theta
zl_2_Gamma_in = load_impedance_2_reflection_coefficient_at_theta
Gamma0_2_Gamma_in = reflection_coefficient_at_theta
Gamma0_2_zin = reflection_coefficient_2_input_impedance_at_theta
|