File: util.py

package info (click to toggle)
scikit-rf 1.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 82,128 kB
  • sloc: python: 33,328; makefile: 130; sh: 19
file content (910 lines) | stat: -rw-r--r-- 22,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
"""

.. currentmodule:: skrf.util
========================================
util (:mod:`skrf.util`)
========================================

Holds utilities that are general conveniences.


Time-related utilities
----------------------
.. autosummary::
   :toctree: generated/

   now_string
   now_string_2_dt

   ProgressBar

Array-related functions
-----------------------
.. autosummary::
   :toctree: generated/

   find_nearest
   find_nearest_index
   has_duplicate_value
   smooth

File-related functions
----------------------
.. autosummary::
   :toctree: generated/

   get_fid
   get_extn
   basename_noext
   git_version
   unique_name
   findReplace
   dict_2_recarray

General Purpose Objects
-----------------------
.. autosummary::
   :toctree: generated/

    HomoList
    HomoDict

"""
from __future__ import annotations

import collections
import contextlib
import fnmatch
import os
import pprint
import re
import sys
import warnings
from collections.abc import Callable, Iterable
from datetime import datetime
from functools import wraps
from pathlib import Path
from subprocess import PIPE, Popen
from typing import Any, TypeVar

import numpy as np

from .constants import Number

try:
    import matplotlib.pyplot as plt
    from matplotlib.axes import Axes
    from matplotlib.figure import Figure
except ImportError:
    Figure = TypeVar("Figure")
    Axes = TypeVar("Axes")
    pass

def plotting_available() -> bool:
    return "matplotlib" in sys.modules

def partial_with_docs(func, *args1, **kwargs1):
    @wraps(func)
    def method(self, *args2, **kwargs2):
        return func(self, *args1, *args2, **kwargs1, **kwargs2)
    return method

def axes_kwarg(func):
    """
    This decorator checks if a :class:`matplotlib.axes.Axes` object is passed,
    if not the current axis will be gathered through :func:`plt.gca`.

    Raises
    ------
    RuntimeError
        When trying to run the decorated function without matplotlib
    """

    @wraps(func)
    def wrapper(*args, **kwargs):
        ax = kwargs.pop('ax', None)
        try:
            if ax is None:
                ax = plt.gca()
        except NameError as err:
            raise RuntimeError("Plotting is not available") from err
        func(*args, ax=ax, **kwargs)

    return wrapper

def copy_doc(copy_func: Callable) -> Callable:
    """Use Example: copy_doc(self.copy_func)(self.func) or used as deco"""
    def wrapper(func: Callable) -> Callable:
        func.__doc__ = copy_func.__doc__
        return func
    return wrapper

def figure(*args, **kwargs) -> Figure:
    """
    Wraps the matplotlib figure call and raises if not available.

    Raises
    ------
    RuntimeError
        When trying to get subplots without matplotlib installed.
    """

    try:
        return plt.figure(*args, **kwargs)
    except NameError as err:
        raise RuntimeError("Plotting is not available") from err

def subplots(*args, **kwargs) -> tuple[Figure, np.ndarray]:
    """
    Wraps the matplotlib subplots call and raises if not available.

    Raises
    ------
    RuntimeError
        When trying to get subplots without matplotlib installed.
    """

    try:
        return plt.subplots(*args, **kwargs)
    except NameError as err:
        raise RuntimeError("Plotting is not available") from err

def now_string() -> str:
    """
    Return a unique sortable string, representing the current time.

    Nice for generating date-time stamps to be used in file-names,
    the companion function :func:`now_string_2_dt` can be used
    to read these string back into datetime objects.

    Returns
    -------
    now : string
        current date-time stamps.

    See Also
    --------
    now_string_2_dt

    """
    return datetime.now().__str__().replace('-','.').replace(':','.').replace(' ','.')


def now_string_2_dt(s: str) -> datetime:
    """
    Converts the output of :func:`now_string` to a datetime object.

    Parameters
    ----------
    s : str
        date-time stamps string as generated by :func:`now_string`

    Returns
    -------
    dt : datetime
        date-time stamps

    See Also
    --------
    now_string

    """
    return datetime(*[int(k) for k in s.split('.')])


def find_nearest(array: np.ndarray, value: Number) -> Number:
    """
    Find the nearest value in array.

    Parameters
    ----------
    array :  np.ndarray
        array we are searching for a value in
    value : element of the array
        value to search for

    Returns
    --------
    found_value : an element of the array
        the value that is numerically closest to `value`

    """
    idx = find_nearest_index(array, value)
    return array[idx]


def find_nearest_index(array: np.ndarray, value: Number) -> int:
    """
    Find the nearest index for a value in array.

    Parameters
    ----------
    array :  np.ndarray
        array we are searching for a value in
    value : element of the array
        value to search for

    Returns
    --------
    found_index : int
        the index at which the  numerically closest element to `value`
        was found at

    References
    ----------
    taken from  http://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array

    """
    return (np.abs(array-value)).argmin()


def slice_domain(x: np.ndarray, domain: tuple):
    """
    Returns a slice object closest to the `domain` of `x`

    domain = x[slice_domain(x, (start, stop))]

    Parameters
    ----------
    vector : np.ndarray
        an array of values
    domain : tuple
        tuple of (start,stop) values defining the domain over
        which to slice

    Examples
    --------
    >>> x = linspace(0,10,101)
    >>> idx = slice_domain(x, (2,6))
    >>> x[idx]

    """
    start = find_nearest_index(x, domain[0])
    stop = find_nearest_index(x, domain[1])
    return slice(start, stop+1)

# file IO


def get_fid(file, *args, **kwargs):
    r"""
    Return a file object, given a filename or file object.

    Useful when you want to allow the arguments of a function to
    be either files or filenames

    Parameters
    ----------
    file : str/unicode, Path, or file-object
        file to open
    \*args, \*\*kwargs : arguments and keyword arguments to `open()`

    Returns
    -------
    fid : file object

    """
    if isinstance(file, (str, Path)):
        return open(file, *args, **kwargs)
    else:
        return file


def get_extn(filename: str | Path) -> str:
    """
    Get the extension from a filename.

    The extension is defined as everything passed the last '.'.
    Returns None if it ain't got one

    Parameters
    ----------
    filename : string or Path
        the filename

    Returns
    -------
    ext : string, None
        either the extension (not including '.') or None if there
        isn't one

    """

    if isinstance(filename, Path):
        return filename.suffix.strip('.') or None

    ext = os.path.splitext(filename)[-1]
    if len(ext) == 0:
        return None
    else:
        return ext[1:]


def basename_noext(filename: str) -> str:
    """
    Get the basename and strips extension.

    Parameters
    ----------
    filename : string
        the filename

    Returns
    -------
    basename : str
        file basename (ie. without extension)

    """
    return os.path.splitext(os.path.basename(filename))[0]


# git
def git_version(modname: str) -> str:
    """
    Return output 'git describe', executed in a module's root directory.

    Parameters
    ----------
    modname : str
        module name

    Returns
    -------
    out : str
        output of 'git describe'

    """
    mod = __import__(modname)
    mod_dir = os.path.split(mod.__file__)[0]
    p = Popen(['git', 'describe'], stdout=PIPE, stderr=PIPE, cwd=mod_dir)

    try:
        out, er = p.communicate()
    except(OSError):
        return None

    out = out.strip('\n')
    if out == '':
        return None
    return out


def dict_2_recarray(d: dict, delim: str, dtype: list[tuple]) -> np.ndarray:
    """
    Turn a dictionary of structured keys to a record array of objects.

    This is useful if you save data-base like meta-data in the form
    or file-naming conventions, aka 'the poor-mans database'

    Parameters
    ----------
    d : dict
        dictionary of structured keys
    delim : str
        delimiter string
    dtype : list of tuple
        list of type, where a type is tuple like ('type_name', type)

    Returns
    -------
    ra : numpy.array

    Examples
    --------
    Given a directory of networks like:

    >>> ls
    a1,0.0,0.0.s1p    a1,3.0,3.0.s1p    a2,3.0,-3.0.s1p   b1,-3.0,3.0.s1p
    ...

    you can sort based on the values or each field, after defining their
    type with `dtype`. The `values` field accesses the objects.

    >>> d = rf.read_all_networks('/tmp/')
    >>> delim = ','
    >>> dtype = [('name', object), ('voltage', float), ('current', float)]
    >>> ra = dict_2_recarray(d=rf.ran(dir), delim=delim, dtype =dtype)

    then you can sift like you do with numpy arrays

    >>> ra[ra['voltage'] < 3]['values']
    array([1-Port Network: 'a2,0.0,-3.0',  450-800 GHz, 101 pts, z0=[ 50.+0.j],
           1-Port Network: 'b1,0.0,3.0',  450-800 GHz, 101 pts, z0=[ 50.+0.j],
           1-Port Network: 'a1,0.0,-3.0',  450-800 GHz, 101 pts, z0=[ 50.+0.j],
    """

    split_keys = [tuple(k.split(delim)+[d[k]]) for k in d.keys()]
    x = np.array(split_keys, dtype=dtype+[('values',object)])
    return x


def findReplace(directory: str, find: str, replace: str, file_pattern: str):
    r"""
    Find/replace some txt in all files in a directory, recursively.

    This was found in [1]_ .

    Parameters
    ----------
    directory : str
        path of a directory
    find : str
        pattern to search for
    replace : str
        string to replace with
    file_pattern : str
        file pattern for filtering. Ex: '\*.txt'.

    Examples
    --------
    >>> rf.findReplace('some_dir', 'find this', 'replace with this', '*.txt')

    References
    ----------
    .. [1] http://stackoverflow.com/questions/4205854/python-way-to-recursively-find-and-replace-string-in-text-files
    """
    for path, _dirs, files in os.walk(os.path.abspath(directory)):
        for filename in fnmatch.filter(files, file_pattern):
            filepath = os.path.join(path, filename)
            with open(filepath) as f:
                s = f.read()
            s = s.replace(find, replace)
            with open(filepath, "w") as f:
                f.write(s)


# general purpose objects

class HomoList(collections.abc.Sequence):
    """
    A Homogeneous Sequence.

    Provides a class for a list-like object which contains
    homogeneous values. Attributes of the values can be accessed through
    the attributes of HomoList. Searching is done like numpy arrays.

    Initialized from a list  of all the same type

    >>> h = HomoDict([Foo(...), Foo(...)])

    The individual values of `h` can be access in identical fashion to
    Lists.

    >>> h[0]

    Assuming that `Foo` has property `prop` and function `func` ...

    Access elements' properties:

    >>> h.prop

    Access elements' functions:

    >>> h.func()

    Searching:

    >>> h[h.prop == value]
    >>> h[h.prop < value]

    Multiple search:

    >>> h[set(h.prop==value1) & set( h.prop2==value2)]

    Combos:

    >>> h[h.prop==value].func()
    """


    def __init__(self, list_):
        self.store = list(list_)

    def __eq__(self, value):
        return [k for k in range(len(self)) if self.store[k] == value ]

    def __ne__(self, value):
        return [k for k in range(len(self)) if self.store[k] != value ]

    def __gt__(self, value):
        return [k for k in range(len(self)) if self.store[k] > value ]

    def __ge__(self, value):
        return [k for k in range(len(self)) if self.store[k] >= value ]

    def __lt__(self, value):
        return [k for k in range(len(self)) if self.store[k] < value ]

    def __le__(self, value):
        return [k for k in range(len(self)) if self.store[k] <= value ]

    def __getattr__(self, name):
        return self.__class__(
            [k.__getattribute__(name) for k in self.store])

    def __getitem__(self, idx):
        try:
            return self.store[idx]
        except(TypeError):
            return self.__class__([self.store[k] for k in idx])


    def __call__(self, *args, **kwargs):
        return self.__class__(
            [k(*args,**kwargs) for k in self.store])

    def __setitem__(self, idx, value):
        self.store[idx] = value

    def __delitem__(self, idx):
        del self.store[idx]

    def __iter__(self):
        return iter(self.store)

    def __len__(self):
        return len(self.store)

    def __str__(self):
        return pprint.pformat(self.store)

    def __repr__(self):
        return pprint.pformat(self.store)


class HomoDict(collections.abc.MutableMapping):
    """
    A Homogeneous Mutable Mapping.

    Provides a class for a dictionary-like object which contains
    homogeneous values. Attributes of the values can be accessed through
    the attributes of HomoDict. Searching is done like numpy arrays.

    Initialized from a dictionary containing values of all the same type

    >>> h = HomoDict({'a':Foo(...),'b': Foo(...), 'c':Foo(..)})

    The individual values of `h` can be access in identical fashion to
    Dictionaries.

    >>> h['key']

    Assuming that `Foo` has property `prop`  and function `func` ...

    Access elements' properties:

    >>> h.prop

    Access elements' functions:

    >>> h.func()

    Searching:

    >>> h[h.prop == value]
    >>> h[h.prop < value]

    Multiple search:

    >>> h[set(h.prop==value1) & set( h.prop2==value2)]

    Combos:

    >>> h[h.prop==value].func()
    """
    def __init__(self, dict_):
        self.store = dict(dict_)

    def __eq__(self, value):
        return [k for k in self.store if self.store[k] == value ]

    def __ne__(self, value):
        return [k for k in self.store if self.store[k] != value ]

    def __gt__(self, value):
        return [k for k in self.store if self.store[k] > value ]

    def __ge__(self, value):
        return [k for k in self.store if self.store[k] >= value ]

    def __lt__(self, value):
        return [k for k in self.store if self.store[k] < value ]

    def __le__(self, value):
        return [k for k in self.store if self.store[k] <= value ]

    def __getattr__(self, name):
        return self.__class__(
            {k: getattr(self.store[k],name) for k in self.store})

    def __getitem__(self, key):
        if isinstance(key, str):
            return self.store[key]
        else:
            c =   self.__class__({k:self.store[k] for k in key})
        return c
        #if len(c) == 1:
        #    return c.store.values()[0]
        #else:
        #    return c

    def __call__(self, *args, **kwargs):
        return self.__class__(
            {k: self.store[k](*args, **kwargs) for k in self.store})

    def __setitem__(self, key, value):
        self.store[key] = value

    def __delitem__(self, key):
        del self.store[key]

    def __iter__(self):
        return iter(self.store)

    def __len__(self):
        return len(self.store)

    def __str__(self):
        return pprint.pformat(self.store)

    def __repr__(self):
        return pprint.pformat(self.store)


    def copy(self):
        return HomoDict(self.store)


    def filter_nones(self):
        self.store =  {k:self.store[k] for k in self.store \
                        if self.store[k] is not None}

    def filter(self, **kwargs):
        """
        Filter self based on kwargs

        This is equivalent to:

        >>> h = HomoDict(...)
        >>> for k in kwargs:
        >>>     h = h[k ==kwargs[k]]
        >>> return h

        prefixing the kwarg value with a '!' causes a not equal test (!=)

        Examples
        ----------
        >>> h = HomoDict(...)
        >>> h.filter(name='jean', age = '18', gender ='!female')

        """
        a = self
        for k in kwargs:
            if kwargs[k][0] == '!':
                a = a[a.__getattr__(k) != kwargs[k][1:]]
            else:
                a = a[a.__getattr__(k) == kwargs[k]]
        return a


def has_duplicate_value(value: Any, values: Iterable, index: int) -> bool | int:
    """
    Check if there is another value of the current index in the list.

    Parameters
    ----------
    value : Any
        any value in a list
    values : Iterable
        the iterable containing the values
    index : int
        the index of the current item we are checking for.

    Returns
    -------
    index : bool or int
        returns None if no duplicate found, or the index of the first found duplicate

    Examples
    --------
    >>> rf.has_duplicate_value(0, [1, 2, 0, 3, 0], -1)  # -> 2
    >>> rf.has_duplicate_value(0, [1, 2, 0, 3, 0], 2)  # -> 4
    >>> rf.has_duplicate_value(3, [1, 2, 0, 3, 0], 0)  # -> 3
    >>> rf.has_duplicate_value(3, [1, 2, 0, 3, 0], 3)  # -> False
    """

    for i, val in enumerate(values):
        if i == index:
            continue
        if value == val:
            return i
    return False


def unique_name(name: str, names: list, exclude: int = -1) -> str:
    """
    Pass in a name and a list of names, and increment with _## as necessary to ensure a unique name.

    Parameters
    ----------
    name : str
        the chosen name, to be modified if necessary
    names : list
        list of names (str)
    exclude : int, optional
        the index of an item to be excluded from the search. Default is -1.

    Returns
    -------
    unique_name : str

    """
    if not has_duplicate_value(name, names, exclude):
        return name
    else:
        if re.match(r"_\d\d", name[-3:]):
            name_base = name[:-3]
            suffix = int(name[-2:])
        else:
            name_base = name
            suffix = 1

        for num in range(suffix, 100, 1):
            name = f"{name_base:s}_{num:02d}"
            if not has_duplicate_value(name, names, exclude):
                break
    return name


def smooth(x: np.ndarray, window_len: int = 11, window: str = 'flat') -> np.ndarray:
    """
    Smooth the data using a window with requested size.

    Based on the function from the scipy cookbook [#]_

    This method is based on the convolution of a scaled window with the signal.
    The signal is prepared by introducing reflected copies of the signal
    (with the window size) in both ends so that transient parts are minimized
    in the beginning and end part of the output signal.

    Parameters
    ----------
    x : numpy.array
        the input signal
    window_len : int, optional
        the dimension of the smoothing window; should be an odd integer.
        Default is 11.
    window : str, optional
        the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
        flat window will produce a moving average smoothing. Default is 'flat'

    Returns
    -------
    y : numpy.array
        The smoothed signal

    Examples
    --------
    >>> t = linspace(-2, 2, 0.1)
    >>> x = sin(t) + randn(len(t))*0.1
    >>> y = smooth(x)

    See Also
    --------
    numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
    scipy.signal.lfilter

    Note
    ----
    `length(output) != length(input)`.
    To correct this: `return y[(window_len/2-1):-(window_len/2)]` instead of just `y`.

    References
    ----------
    .. [#] http://scipy-cookbook.readthedocs.io/items/SignalSmooth.html

    """

    if x.ndim != 1:
        raise ValueError("smooth only accepts 1 dimension arrays.")

    if x.size < window_len:
        raise ValueError("Input vector needs to be bigger than window size.")

    if window_len < 3:
        return x

    if window not in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
        raise ValueError("Window is one of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")

    s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
    if window == 'flat':  # moving average
        w = np.ones(window_len, 'd')
    else:
        w = eval('np.' + window + '(window_len)')
    y = np.convolve(w / w.sum(), s, mode='same')
    return y[window_len-1:-(window_len-1)]


class ProgressBar:
    """
    A progress bar based off of the notebook/ipython progress bar from PyMC.

    Useful when waiting for long operations such as taking a large number
    of VNA measurements that may take a few minutes.

    Examples
    --------
    >>> from time import sleep
    >>> pb = rf.ProgressBar(10)
    >>> for idx in range(10):
    >>>     sleep(1)
    >>>     pb.animate(idx)

    """
    def __init__(self, iterations: int, label: str = "iterations"):
        """
        Progress bar constructor.

        Parameters
        ----------
        iterations : int
            Number of expected iterations
        label : str, optional
            Progress bar label, by default "iterations"
        """
        self.iterations = iterations
        self.label = label
        self.prog_bar = '[]'
        self.fill_char = '*'
        self.width = 50
        self.__update_amount(0)

    def animate(self, iteration: int):
        """
        Animate the progress bar.

        Parameters
        ----------
        iteration : int
            current iteration
        """
        print('\r', self, end='')
        sys.stdout.flush()
        self.update_iteration(iteration + 1)

    def update_iteration(self, elapsed_iter: int):
        self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0)
        self.prog_bar += '  %d of %s %s complete' % (elapsed_iter, self.iterations, self.label)

    def __update_amount(self, new_amount: int):
        percent_done = int(round((new_amount / 100.0) * 100.0))
        all_full = self.width - 2
        num_hashes = int(round((percent_done / 100.0) * all_full))
        self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']'
        pct_place = (len(self.prog_bar) // 2) - len(str(percent_done))
        pct_string = '%d%%' % percent_done
        self.prog_bar = self.prog_bar[0:pct_place] + \
            (pct_string + self.prog_bar[pct_place + len(pct_string):])

    def __str__(self):
        return str(self.prog_bar)


@contextlib.contextmanager
def suppress_numpy_warnings(**kw):
    olderr = np.seterr(**kw)
    yield
    np.seterr(**olderr)


def suppress_warning_decorator(msg):
    def suppress_warnings_decorated(func):
        @wraps(func)
        def suppressed_func(*k, **kw):
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", message=f"{msg}.*")
                res = func(*k, **kw)
            return res
        return suppressed_func
    return suppress_warnings_decorated