1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
|
from __future__ import annotations
import logging
import os
import warnings
from timeit import default_timer as timer
from typing import TYPE_CHECKING, Any
import numpy as np
from scipy.integrate import trapezoid
from .util import Axes, axes_kwarg
# imports for type hinting
if TYPE_CHECKING:
from .network import Network
logger = logging.getLogger(__name__)
class VectorFitting:
"""
This class provides a Python implementation of the Vector Fitting algorithm and various functions for the fit
analysis, passivity evaluation and enforcement, and export of SPICE equivalent circuits.
Parameters
----------
network : :class:`skrf.network.Network`
Network instance of the :math:`N`-port holding the frequency responses to be fitted, for example a
scattering, impedance or admittance matrix.
Examples
--------
Load the `Network`, create a `VectorFitting` instance, perform the fit with a given number of real and
complex-conjugate starting poles:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.vector_fit(n_poles_real=1, n_poles_cmplx=4)
Notes
-----
The fitting code is based on the original algorithm [#Gustavsen_vectfit]_ and on two improvements for relaxed pole
relocation [#Gustavsen_relaxed]_ and efficient (fast) solving [#Deschrijver_fast]_. See also the Vector Fitting
website [#vectfit_website]_ for further information and download of the papers listed below. A Matlab implementation
is also available there for reference.
References
----------
.. [#Gustavsen_vectfit] B. Gustavsen, A. Semlyen, "Rational Approximation of Frequency Domain Responses by Vector
Fitting", IEEE Transactions on Power Delivery, vol. 14, no. 3, pp. 1052-1061, July 1999,
DOI: https://doi.org/10.1109/61.772353
.. [#Gustavsen_relaxed] B. Gustavsen, "Improving the Pole Relocating Properties of Vector Fitting", IEEE
Transactions on Power Delivery, vol. 21, no. 3, pp. 1587-1592, July 2006,
DOI: https://doi.org/10.1109/TPWRD.2005.860281
.. [#Deschrijver_fast] D. Deschrijver, M. Mrozowski, T. Dhaene, D. De Zutter, "Marcomodeling of Multiport Systems
Using a Fast Implementation of the Vector Fitting Method", IEEE Microwave and Wireless Components Letters,
vol. 18, no. 6, pp. 383-385, June 2008, DOI: https://doi.org/10.1109/LMWC.2008.922585
.. [#vectfit_website] Vector Fitting website: https://www.sintef.no/projectweb/vectorfitting/
"""
def __init__(self, network: Network):
self.network = network
""" Instance variable holding the Network to be fitted. This is the Network passed during initialization,
which may be changed or set to *None*. """
self.poles = None
""" Instance variable holding the list of fitted poles. It will be initialized by :func:`vector_fit` or
:func:`auto_fit`. This array is 1-dimensional with shape :math:`(K)`, where :math:`K_{real} + K_{complex}` is
the number of real and complex-conjugate poles. This implies that only one part of a complex-conjugate pair is
stored in this array (the one with the positive imaginary part). When calculating the model response in
pole-residue form, the missing part of each complex-conjugate pair has to be added manually. See the source
code of :func:`get_model_response()` as an example. """
self.residues = None
""" Instance variable holding the list of fitted residues. It will be initialized by :func:`vector_fit` or
:func:`auto_fit`. This array is 2-dimensional with shape :math:`(M, K)`, where :math:`M = N_{ports}^2` is the
number of frequency responses of the fitted network, and :math:`K` is the number of real and complex-conjugate
poles. See the documentation of :attr:`poles` for details about complex-conjugate pairs. The residues of the
individual frequency responses are stacked in row-major format (C-like), for example `[[S11_1, S11_2, ...],
[S12_1, S12_2, ...], [S21_1, S21_2, ...], [S22_1, S22_2, ...]]` for a 2-port network. """
self.proportional_coeff = None
""" Instance variable holding the list of fitted proportional coefficients. It will be initialized by
:func:`vector_fit` or :func:`auto_fit`. This array is 1-dimensional with shape :math:`M`, where
:math:`M = N_{ports}^2` is the number of frequency responses of the fitted network, and :math:`K` is the number
of real and complex-conjugate poles. See the documentation of :attr:`poles` for details about complex-conjugate
pairs. The proportional coefficient of the individual frequency responses are stacked in row-major format
(C-like), for example `[S11, S12, S21, S22]` for a 2-port network. """
self.constant_coeff = None
""" Instance variable holding the list of fitted constants. It will be initialized by :func:`vector_fit` or
:func:`auto_fit`. This array is 1-dimensional with shape :math:`M`, where :math:`M = N_{ports}^2` is the number
of frequency responses of the fitted network, and :math:`K` is the number of real and complex-conjugate poles.
See the documentation of :attr:`poles` for details about complex-conjugate pairs. The constants of the
individual frequency responses are stacked in row-major format (C-like), for example `[S11, S12, S21, S22]` for
a 2-port network. """
self.max_iterations = 100
""" Instance variable specifying the maximum number of iterations for the fitting process and for the passivity
enforcement. To be changed by the user before calling :func:`vector_fit` and/or :func:`passivity_enforce`. """
self.max_tol = 1e-6
""" Instance variable specifying the convergence criterion in terms of relative tolerance. To be changed by the
user before calling :func:`vector_fit`. """
self.wall_clock_time = 0
""" Instance variable holding the wall-clock time (in seconds) consumed by the most recent fitting process with
:func:`vector_fit`. Subsequent calls of :func:`vector_fit` will overwrite this value. """
self.d_res_history = []
self.delta_max_history = []
self.history_max_sigma = []
self.history_cond_A = []
self.history_rank_deficiency = []
@staticmethod
def get_spurious(poles: np.ndarray, residues: np.ndarray, n_freqs: int = 101, gamma: float = 0.03) -> np.ndarray:
"""
Classifies fitted pole-residue pairs as spurious or not spurious. The implementation is based on the evaluation
of band-limited energy norms (p=2) of the resonance curves of individual pole-residue pairs, as proposed in
[#Grivet-Talocia]_.
Parameters
----------
poles : ndarray, shape (N)
Array of fitted poles
residues : ndarray, shape (M, N)
Array of fitted residues
n_freqs : int, optional
Number of frequencies for the evaluation. The frequency range is chosen automatically and the default
101 frequencies should be appropriate in most cases.
gamma : float, optional
Sensitivity threshold for the classification. Typical values range from 0.01 to 0.05.
Returns
-------
ndarray, bool, shape (M)
Boolean array having the same shape as :attr:`poles`. `True` marks the respective pole as spurious.
References
----------
.. [#Grivet-Talocia] S. Grivet-Talocia and M. Bandinu, "Improving the convergence of vector fitting for
equivalent circuit extraction from noisy frequency responses," in IEEE Transactions on Electromagnetic
Compatibility, vol. 48, no. 1, pp. 104-120, Feb. 2006, DOI: https://doi.org/10.1109/TEMC.2006.870814
"""
omega_eval = np.linspace(np.min(poles.imag) / 3, np.max(poles.imag) * 3, n_freqs)
h = (residues[:, None, :] / (1j * omega_eval[:, None] - poles)
+ np.conj(residues[:, None, :]) / (1j * omega_eval[:, None] - np.conj(poles)))
norm2 = np.sqrt(trapezoid(h.real ** 2 + h.imag ** 2, omega_eval, axis=1))
spurious = np.all(norm2 / np.mean(norm2) < gamma, axis=0)
return spurious
@staticmethod
def get_model_order(poles: np.ndarray) -> int:
"""
Returns the model order calculated with :math:`N_{real} + 2 N_{complex}` for a given set of poles.
Parameters
----------
poles: ndarray
The poles of the model as a list or NumPy array.
Returns
-------
order: int
"""
# poles.imag != 0 is True(1) for complex poles, False (0) for real poles.
# Adding one to each element gives 2 columns for complex and 1 column for real poles.
return np.sum((poles.imag != 0) + 1)
def vector_fit(self, n_poles_real: int = 2, n_poles_cmplx: int = 2, init_pole_spacing: str = 'lin',
parameter_type: str = 's', fit_constant: bool = True, fit_proportional: bool = False) -> None:
"""
Main work routine performing the vector fit. The results will be stored in the class variables
:attr:`poles`, :attr:`residues`, :attr:`proportional_coeff` and :attr:`constant_coeff`.
Parameters
----------
n_poles_real : int, optional
Number of initial real poles. See notes.
n_poles_cmplx : int, optional
Number of initial complex conjugate poles. See notes.
init_pole_spacing : str, optional
Type of initial pole spacing across the frequency interval of the S-matrix. Either *linear* (`'lin'`),
*logarithmic* (`'log'`), or `custom`. In case of `custom`, the initial poles must be stored in :attr:`poles`
as a NumPy array before calling this method. They will be overwritten by the final poles. The
initialization parameters `n_poles_real` and `n_poles_cmplx` will be ignored in case of `'custom'`.
parameter_type : str, optional
Representation type of the frequency responses to be fitted. Either *scattering* (`'s'` or `'S'`),
*impedance* (`'z'` or `'Z'`) or *admittance* (`'y'` or `'Y'`). It's recommended to perform the fit on the
original S parameters. Otherwise, scikit-rf will convert the responses from S to Z or Y, which might work
for the fit but can cause other issues.
fit_constant : bool, optional
Include a constant term **d** in the fit.
fit_proportional : bool, optional
Include a proportional term **e** in the fit.
Returns
-------
None
No return value.
Notes
-----
The required number of real or complex conjugate starting poles depends on the behaviour of the frequency
responses. To fit a smooth response such as a low-pass characteristic, 1-3 real poles and no complex conjugate
poles is usually sufficient. If resonances or other types of peaks are present in some or all of the responses,
a similar number of complex conjugate poles is required. Be careful not to use too many poles, as excessive
poles will not only increase the computation workload during the fitting and the subsequent use of the model,
but they can also introduce unwanted resonances at frequencies well outside the fit interval.
See Also
--------
auto_fit : Automatic vector fitting routine with pole adding and skimming.
"""
timer_start = timer()
# use normalized frequencies during the iterations (seems to be more stable during least-squares fit)
norm = np.average(self.network.f)
# norm = np.exp(np.mean(np.log(self.network.f)))
freqs_norm = np.array(self.network.f) / norm
# get initial poles
poles = self._init_poles(freqs_norm, n_poles_real, n_poles_cmplx, init_pole_spacing)
# check and normalize custom poles
if poles is None:
if self.poles is not None and len(self.poles) > 0:
poles = self.poles / norm
else:
raise ValueError('Initial poles must be provided in `self.poles` when calling with '
'`init_pole_spacing == \'custom\'`.')
# save initial poles (un-normalize first)
initial_poles = poles * norm
max_singular = 1
logger.info('### Starting pole relocation process.\n')
# select network representation type
if parameter_type.lower() == 's':
nw_responses = self.network.s
elif parameter_type.lower() == 'z':
nw_responses = self.network.z
elif parameter_type.lower() == 'y':
nw_responses = self.network.y
else:
warnings.warn('Invalid choice of matrix parameter type (S, Z, or Y); proceeding with scattering '
'representation.', UserWarning, stacklevel=2)
nw_responses = self.network.s
# stack frequency responses as a single vector
# stacking order (row-major):
# s11, s12, s13, ..., s21, s22, s23, ...
freq_responses = []
for i in range(self.network.nports):
for j in range(self.network.nports):
freq_responses.append(nw_responses[:, i, j])
freq_responses = np.array(freq_responses)
# responses will be weighted according to their norm;
# alternative: equal weights with weight_response = 1.0
# or anti-proportional weights with weight_response = 1 / np.linalg.norm(freq_response)
weights_responses = np.linalg.norm(freq_responses, axis=1)
#weights_responses = np.ones(self.network.nports ** 2)
#weights_responses = 10 / np.exp(np.mean(np.log(np.abs(freq_responses)), axis=1))
# ITERATIVE FITTING OF POLES to the provided frequency responses
# initial set of poles will be replaced with new poles after every iteration
iterations = self.max_iterations
self.d_res_history = []
self.delta_max_history = []
self.history_cond_A = []
self.history_rank_deficiency = []
converged = False
# POLE RELOCATION LOOP
while iterations > 0:
logger.info(f'Iteration {self.max_iterations - iterations + 1}')
poles, d_res, cond, rank_deficiency, residuals, singular_vals = self._pole_relocation(
poles, freqs_norm, freq_responses, weights_responses, fit_constant, fit_proportional)
logger.info(f'Condition number of coefficient matrix is {int(cond)}')
self.history_cond_A.append(cond)
self.history_rank_deficiency.append(rank_deficiency)
logger.info(f'Rank deficiency is {rank_deficiency}.')
self.d_res_history.append(d_res)
logger.info(f'd_res = {d_res}')
# calculate relative changes in the singular values; stop iteration loop once poles have converged
new_max_singular = np.amax(singular_vals)
delta_max = np.abs(1 - new_max_singular / max_singular)
self.delta_max_history.append(delta_max)
logger.info(f'Max. relative change in residues = {delta_max}\n')
max_singular = new_max_singular
stop = False
if delta_max < self.max_tol:
if converged:
# is really converged, finish
logger.info(f'Pole relocation process converged after {self.max_iterations - iterations + 1} '
'iterations.')
stop = True
else:
# might be converged, but do one last run to be sure
converged = True
else:
if converged:
# is not really converged, continue
converged = False
iterations -= 1
if iterations == 0:
# loop ran into iterations limit; trying to assess the issue
max_cond = np.amax(self.history_cond_A)
max_deficiency = np.amax(self.history_rank_deficiency)
if max_cond > 1e10:
hint_illcond = ('\nHint: the linear system was ill-conditioned (max. condition number was '
f'{max_cond}).')
else:
hint_illcond = ''
if max_deficiency < 0:
hint_rank = ('\nHint: the coefficient matrix was rank-deficient (max. rank deficiency was '
f'{max_deficiency}).')
else:
hint_rank = ''
if converged and stop is False:
warnings.warn('Vector Fitting: The pole relocation process barely converged to tolerance. '
f'It took the max. number of iterations (N_max = {self.max_iterations}). '
'The results might not have converged properly.'
+ hint_illcond + hint_rank, RuntimeWarning, stacklevel=2)
else:
warnings.warn('Vector Fitting: The pole relocation process stopped after reaching the '
f'maximum number of iterations (N_max = {self.max_iterations}). '
'The results did not converge properly.'
+ hint_illcond + hint_rank, RuntimeWarning, stacklevel=2)
if stop:
iterations = 0
# ITERATIONS DONE
logger.info('Initial poles before relocation:')
logger.info(initial_poles)
logger.info('Final poles:')
logger.info(poles * norm)
logger.info('\n### Starting residues calculation process.\n')
# finally, solve for the residues with the previously calculated poles
residues, constant_coeff, proportional_coeff, residuals, rank, singular_vals = self._fit_residues(
poles, freqs_norm, freq_responses, fit_constant, fit_proportional)
# save poles, residues, d, e in actual frequencies (un-normalized)
self.poles = poles * norm
self.residues = np.array(residues) * norm
self.constant_coeff = np.array(constant_coeff)
self.proportional_coeff = np.array(proportional_coeff) / norm
timer_stop = timer()
self.wall_clock_time = timer_stop - timer_start
logger.info(f'\n### Vector fitting finished in {self.wall_clock_time} seconds.\n')
# raise a warning if the fitted Network is passive but the fit is not (only without proportional_coeff):
if self.network.is_passive() and not fit_proportional:
if not self.is_passive():
warnings.warn('The fitted network is passive, but the vector fit is not passive. Consider running '
'`passivity_enforce()` to enforce passivity before using this model.',
UserWarning, stacklevel=2)
def auto_fit(self, n_poles_init_real: int = 3, n_poles_init_cmplx: int = 3, n_poles_add: int = 3,
model_order_max: int = 100, iters_start: int = 3, iters_inter: int = 3, iters_final: int = 5,
target_error: float = 1e-2, alpha: float = 0.03, gamma: float = 0.03, nu_samples: float = 1.0,
parameter_type: str = 's') -> (np.ndarray, np.ndarray):
"""
Automatic fitting routine implementing the "vector fitting with adding and skimming" algorithm as proposed in
[#Grivet-Talocia]_. This algorithm is able to provide high quality macromodels with automatic model order
optimization, while improving both the rate of convergence and the fit quality in case of noisy data.
The resulting model parameters will be stored in the class variables :attr:`poles`, :attr:`residues`,
:attr:`proportional_coeff` and :attr:`constant_coeff`.
Parameters
----------
n_poles_init_real: int, optional
Number of real poles in the initial model.
n_poles_init_cmplx: int, optional
Number of complex conjugate poles in the initial model.
n_poles_add: int, optional
Number of new poles allowed to be added in each refinement iteration, if possible. This controls how fast
the model order is allowed to grow. Unnecessary poles will have to be skimmed and removed later. This
parameter has a strong effect on the convergence.
model_order_max: int, optional
Maximum model order as calculated with :math:`N_{real} + 2 N_{complex}`. This parameter provides a stopping
criterion in case the refinement process is not converging.
iters_start: int, optional
Number of initial iterations for pole relocations as in regular vector fitting.
iters_inter: int, optional
Number of intermediate iterations for pole relocations during each iteration of the refinement process.
iters_final: int, optional
Number of final iterations for pole relocations after the refinement process.
target_error: float, optional
Target for the model error to be reached during the refinement process. The actual achievable error is
bound by the noise in the data. If specified with a number greater than the noise floor, this parameter
provides another stopping criterion for the refinement process. It therefore affects both the convergence,
the final error, and the final model order (number of poles used in the model).
alpha: float, optional
Threshold for the error decay to stop the refinement loop in case of error stagnation. This parameter
provides another stopping criterion for cases where the model already has enough poles but the target error
still cannot be reached because of excess noise (target error too small for noise level in the data).
gamma: float, optional
Threshold for the detection of spurious poles.
nu_samples: float, optional
Required and enforced (relative) spacing in terms of frequency samples between existing poles and
relocated or added poles. The number can be a float, it does not have to be an integer.
parameter_type: str, optional
Representation type of the frequency responses to be fitted. Either *scattering* (`'s'` or `'S'`),
*impedance* (`'z'` or `'Z'`) or *admittance* (`'y'` or `'Y'`). It's recommended to perform the fit on the
original S parameters. Otherwise, scikit-rf will convert the responses from S to Z or Y, which might work
for the fit but can cause other issues.
Returns
-------
None
No return value.
See Also
--------
vector_fit : Regular vector fitting routine.
References
----------
.. [#Grivet-Talocia] S. Grivet-Talocia and M. Bandinu, "Improving the convergence of vector fitting for
equivalent circuit extraction from noisy frequency responses," in IEEE Transactions on Electromagnetic
Compatibility, vol. 48, no. 1, pp. 104-120, Feb. 2006, DOI: https://doi.org/10.1109/TEMC.2006.870814
"""
self.d_res_history = []
self.delta_max_history = []
self.history_cond_A = []
self.history_rank_deficiency = []
max_singular = 1
error_peak_history = []
model_order_history = []
timer_start = timer()
# use normalized frequencies during the iterations (seems to be more stable during least-squares fit)
norm = np.average(self.network.f)
# norm = np.exp(np.mean(np.log(self.network.f)))
freqs_norm = np.array(self.network.f) / norm
omega_norm = 2 * np.pi * freqs_norm
nu = (omega_norm[1] - omega_norm[0]) * nu_samples
# get initial poles
poles = self._init_poles(freqs_norm, n_poles_init_real, n_poles_init_cmplx, 'lin')
logger.info('### Starting pole relocation process.\n')
# select network representation type
if parameter_type.lower() == 's':
nw_responses = self.network.s
fit_constant = True
fit_proportional = False
elif parameter_type.lower() == 'z':
nw_responses = self.network.z
fit_constant = True
fit_proportional = True
elif parameter_type.lower() == 'y':
nw_responses = self.network.y
fit_constant = True
fit_proportional = True
else:
warnings.warn('Invalid choice of matrix parameter type (S, Z, or Y); proceeding with scattering '
'representation.', UserWarning, stacklevel=2)
nw_responses = self.network.s
fit_constant = True
fit_proportional = False
# stack frequency responses as a single vector
# stacking order (row-major):
# s11, s12, s13, ..., s21, s22, s23, ...
freq_responses = []
for i in range(self.network.nports):
for j in range(self.network.nports):
freq_responses.append(nw_responses[:, i, j])
freq_responses = np.array(freq_responses)
# responses will be weighted according to their norm;
# alternative: equal weights with weight_response = 1.0
# or anti-proportional weights with weight_response = 1 / np.linalg.norm(freq_response)
weights_responses = np.linalg.norm(freq_responses, axis=1)
# weights_responses = np.ones(self.network.nports ** 2)
# weights_responses = 10 / np.exp(np.mean(np.log(np.abs(freq_responses)), axis=1))
# INITIAL POLE RELOCATION FOR i_start ITERATIONS
for _ in range(iters_start):
poles, d_res, cond, rank_deficiency, residuals, singular_vals = self._pole_relocation(
poles, freqs_norm, freq_responses, weights_responses, fit_constant, fit_proportional)
self.d_res_history.append(d_res)
logger.info(f'Condition number of coefficient matrix is {int(cond)}')
self.history_cond_A.append(cond)
self.history_rank_deficiency.append(rank_deficiency)
logger.info(f'Rank deficiency is {rank_deficiency}.')
new_max_singular = np.amax(singular_vals)
delta_max = np.abs(1 - new_max_singular / max_singular)
self.delta_max_history.append(delta_max)
logger.info(f'Max. relative change in residues = {delta_max}\n')
max_singular = new_max_singular
# RESIDUE FITTING FOR ERROR COMPUTATION
residues, constant_coeff, proportional_coeff, residuals, rank, singular_vals = self._fit_residues(
poles, freqs_norm, freq_responses, fit_constant, fit_proportional, enforce_dc=False)
delta = self._get_delta(poles, residues, constant_coeff, proportional_coeff, freqs_norm, freq_responses,
weights_responses)
error_peak = np.max(delta)
error_peak_history.append(error_peak)
model_order = self.get_model_order(poles)
model_order_history.append(model_order)
delta_eps = 10 * alpha
# POLE SKIMMING AND ADDING LOOP
while error_peak > target_error and model_order < model_order_max and delta_eps > alpha:
# SKIMMING OF SPURIOUS POLES
spurious = self.get_spurious(poles, residues, gamma=gamma)
n_skim = np.sum(spurious)
poles = poles[~spurious]
# REPLACING SPURIOUS POLE AND ADDING NEW POLES
idx_freqs_start, idx_freqs_stop, idx_freqs_max, delta_mean_bands = self._find_error_bands(freqs_norm, delta)
n_bands = len(idx_freqs_max)
if n_bands < n_skim:
n_add = n_bands
elif n_bands < n_skim + n_poles_add:
n_add = n_bands
else:
n_add = n_skim + n_poles_add
for i in range(n_add):
omega_add = omega_norm[idx_freqs_max[i]]
pole_add = (-0.01 + 1j) * omega_add
# compute distance to neighbouring poles
abs_poles_existing = np.abs(poles) - pole_add.imag # (equation 16)
#abs_poles_existing = np.abs(poles - pole_add) # (equation 17)
# avoid forbidden bands (too close to neighbour)
if np.min(abs_poles_existing) < nu or pole_add.imag < nu:
# decide shift direction (towards higher or lower frequencies)
if idx_freqs_max[i] > 0:
delta_below = delta[idx_freqs_max[i] - 1]
else:
delta_below = 0
if idx_freqs_max[i] < len(omega_norm) - 1:
delta_above = delta[idx_freqs_max[i] + 1]
else:
delta_above = 0
if delta_above > delta_below:
# shift to higher frequencies
pole_add += 1j * nu
else:
# shift to lower frequencies
pole_add -= 1j * nu
poles = np.append(poles, [pole_add])
# INTERMEDIATE POLE RELOCATION FOR i_inter ITERATIONS
for _ in range(iters_inter):
poles, d_res, cond, rank_deficiency, residuals, singular_vals = self._pole_relocation(
poles, freqs_norm, freq_responses, weights_responses, fit_constant, fit_proportional)
self.d_res_history.append(d_res)
logger.info(f'Condition number of coefficient matrix is {int(cond)}')
self.history_cond_A.append(cond)
self.history_rank_deficiency.append(rank_deficiency)
logger.info(f'Rank deficiency is {rank_deficiency}.')
new_max_singular = np.amax(singular_vals)
delta_max = np.abs(1 - new_max_singular / max_singular)
self.delta_max_history.append(delta_max)
logger.info(f'Max. relative change in residues = {delta_max}\n')
max_singular = new_max_singular
# RESIDUE FITTING FOR ERROR COMPUTATION
residues, constant_coeff, proportional_coeff, residuals, rank, singular_vals = self._fit_residues(
poles, freqs_norm, freq_responses, fit_constant, fit_proportional, enforce_dc=False)
delta = self._get_delta(poles, residues, constant_coeff, proportional_coeff, freqs_norm, freq_responses,
weights_responses)
error_peak_history.append(np.max(delta))
m = 3
if len(error_peak_history) > m:
delta_eps = np.mean(np.abs(np.diff(error_peak_history[-1-m:-1])))
else:
delta_eps = 1
model_order = self.get_model_order(poles)
model_order_history.append(model_order)
# SKIMMING OF SPURIOUS POLES
spurious = self.get_spurious(poles, residues, gamma=gamma)
poles = poles[~spurious]
# FINAL POLE RELOCATION FOR i_final ITERATIONS
for _ in range(iters_final):
poles, d_res, cond, rank_deficiency, residuals, singular_vals = self._pole_relocation(
poles, freqs_norm, freq_responses, weights_responses, fit_constant, fit_proportional)
self.d_res_history.append(d_res)
logger.info(f'Condition number of coefficient matrix is {int(cond)}')
self.history_cond_A.append(cond)
self.history_rank_deficiency.append(rank_deficiency)
logger.info(f'Rank deficiency is {rank_deficiency}.')
new_max_singular = np.amax(singular_vals)
delta_max = np.abs(1 - new_max_singular / max_singular)
self.delta_max_history.append(delta_max)
logger.info(f'Max. relative change in residues = {delta_max}\n')
max_singular = new_max_singular
# FINAL RESIDUE FITTING
residues, constant_coeff, proportional_coeff, residuals, rank, singular_vals = self._fit_residues(
poles, freqs_norm, freq_responses, fit_constant, fit_proportional, enforce_dc=True)
# save poles, residues, d, e in actual frequencies (un-normalized)
self.poles = poles * norm
self.residues = np.array(residues) * norm
self.constant_coeff = np.array(constant_coeff)
self.proportional_coeff = np.array(proportional_coeff) / norm
timer_stop = timer()
self.wall_clock_time = timer_stop - timer_start
@staticmethod
def _init_poles(freqs: list, n_poles_real: int, n_poles_cmplx: int, init_pole_spacing: str):
# create initial poles and space them across the frequencies in the provided Touchstone file
fmin = np.amin(freqs)
fmax = np.amax(freqs)
# poles cannot be at f=0; hence, f_min for starting pole must be greater than 0
if fmin == 0.0:
# random choice: use 1/1000 of first non-zero frequency
fmin = freqs[1] / 1000
init_pole_spacing = init_pole_spacing.lower()
if init_pole_spacing == 'log':
pole_freqs_real = np.geomspace(fmin, fmax, n_poles_real)
pole_freqs_cmplx = np.geomspace(fmin, fmax, n_poles_cmplx)
elif init_pole_spacing == 'lin':
pole_freqs_real = np.linspace(fmin, fmax, n_poles_real)
pole_freqs_cmplx = np.linspace(fmin, fmax, n_poles_cmplx)
elif init_pole_spacing == 'custom':
pole_freqs_real = None
pole_freqs_cmplx = None
else:
warnings.warn('Invalid choice of initial pole spacing; proceeding with linear spacing.',
UserWarning, stacklevel=2)
pole_freqs_real = np.linspace(fmin, fmax, n_poles_real)
pole_freqs_cmplx = np.linspace(fmin, fmax, n_poles_cmplx)
if pole_freqs_real is not None and pole_freqs_cmplx is not None:
# init poles array of correct length
poles = np.zeros(n_poles_real + n_poles_cmplx, dtype=complex)
# add real poles
for i, f in enumerate(pole_freqs_real):
omega = 2 * np.pi * f
poles[i] = -1 * omega
# add complex-conjugate poles (store only positive imaginary parts)
i_offset = len(pole_freqs_real)
for i, f in enumerate(pole_freqs_cmplx):
omega = 2 * np.pi * f
poles[i_offset + i] = (-0.01 + 1j) * omega
return poles
else:
return None
@staticmethod
def _pole_relocation(poles, freqs, freq_responses, weights_responses, fit_constant, fit_proportional):
n_responses, n_freqs = np.shape(freq_responses)
n_samples = n_responses * n_freqs
omega = 2 * np.pi * freqs
s = 1j * omega
# weight of extra equation to avoid trivial solution
weight_extra = np.linalg.norm(weights_responses[:, None] * freq_responses) / n_samples
# weights w are applied directly to the samples, which get squared during least-squares fitting; hence sqrt(w)
weights_responses = np.sqrt(weights_responses)
weight_extra = np.sqrt(weight_extra)
# count number of rows and columns in final coefficient matrix to solve for (c_res, d_res)
# (ratio #real/#complex poles might change during iterations)
# We need two columns for complex poles and one column for real poles in A matrix.
# This number equals the model order.
n_cols_unused = VectorFitting.get_model_order(poles)
n_cols_used = n_cols_unused
n_cols_used += 1
idx_constant = []
idx_proportional = []
if fit_constant:
idx_constant = [n_cols_unused]
n_cols_unused += 1
if fit_proportional:
idx_proportional = [n_cols_unused]
n_cols_unused += 1
real_mask = poles.imag == 0
# list of indices in 'poles' with real values
idx_poles_real = np.nonzero(real_mask)[0]
# list of indices in 'poles' with complex values
idx_poles_complex = np.nonzero(~real_mask)[0]
# positions (columns) of coefficients for real and complex-conjugate terms in the rows of A determine the
# respective positions of the calculated residues in the results vector.
# to have them ordered properly for the subsequent assembly of the test matrix H for eigenvalue extraction,
# place real poles first, then complex-conjugate poles with their respective real and imaginary parts:
# [r1', r2', ..., (r3', r3''), (r4', r4''), ...]
n_real = len(idx_poles_real)
n_cmplx = len(idx_poles_complex)
idx_res_real = np.arange(n_real)
idx_res_complex_re = n_real + 2 * np.arange(n_cmplx)
idx_res_complex_im = idx_res_complex_re + 1
# complex coefficient matrix of shape [N_responses, N_freqs, n_cols_unused + n_cols_used]
# layout of each row:
# [pole1, pole2, ..., (constant), (proportional), pole1, pole2, ..., constant]
A = np.empty((n_responses, n_freqs, n_cols_unused + n_cols_used), dtype=complex)
# calculate coefficients for real and complex residues in the solution vector
#
# real pole-residue term (r = r', p = p'):
# fractional term is r' / (s - p')
# coefficient for r' is 1 / (s - p')
coeff_real = 1 / (s[:, None] - poles[None, idx_poles_real])
# complex-conjugate pole-residue pair (r = r' + j r'', p = p' + j p''):
# fractional term is r / (s - p) + conj(r) / (s - conj(p))
# = [1 / (s - p) + 1 / (s - conj(p))] * r' + [1j / (s - p) - 1j / (s - conj(p))] * r''
# coefficient for r' is 1 / (s - p) + 1 / (s - conj(p))
# coefficient for r'' is 1j / (s - p) - 1j / (s - conj(p))
coeff_complex_re = (1 / (s[:, None] - poles[None, idx_poles_complex]) +
1 / (s[:, None] - np.conj(poles[None, idx_poles_complex])))
coeff_complex_im = (1j / (s[:, None] - poles[None, idx_poles_complex]) -
1j / (s[:, None] - np.conj(poles[None, idx_poles_complex])))
# part 1: first sum of rational functions (variable c)
A[:, :, idx_res_real] = coeff_real
A[:, :, idx_res_complex_re] = coeff_complex_re
A[:, :, idx_res_complex_im] = coeff_complex_im
# part 2: constant (variable d) and proportional term (variable e)
A[:, :, idx_constant] = 1
A[:, :, idx_proportional] = s[:, None]
# part 3: second sum of rational functions multiplied with frequency response (variable c_res)
A[:, :, n_cols_unused + idx_res_real] = -1 * freq_responses[:, :, None] * coeff_real
A[:, :, n_cols_unused + idx_res_complex_re] = -1 * freq_responses[:, :, None] * coeff_complex_re
A[:, :, n_cols_unused + idx_res_complex_im] = -1 * freq_responses[:, :, None] * coeff_complex_im
# part 4: constant (variable d_res)
A[:, :, -1] = -1 * freq_responses
A_ri = np.hstack((A.real, A.imag))
# calculation of matrix sizes after QR decomposition:
# stacked coefficient matrix (A.real, A.imag) has shape (L, M, N)
# with
# L = n_responses = n_ports ** 2
# M = 2 * n_freqs (because of hstack with 2x n_freqs)
# N = n_cols_unused + n_cols_used
# then
# R has shape (L, K, N) with K = min(M, N)
dim_m = 2 * n_freqs
dim_n = n_cols_unused + n_cols_used
dim_k = min(dim_m, dim_n)
# QR decomposition
# R = np.linalg.qr(A_ri, 'r')
# direct QR of stacked matrices for linalg.qr() only works with numpy>=1.22.0
# workaround for old numpy:
R = np.empty((n_responses, dim_k, dim_n))
for i in range(n_responses):
R[i] = np.linalg.qr(A_ri[i], mode='r')
# only R22 is required to solve for c_res and d_res
# R12 and R22 can have a different number of rows, depending on K
if dim_k == dim_m:
# K = M
n_rows_r12 = n_freqs
n_rows_r22 = n_freqs
else:
# K = N
n_rows_r12 = n_cols_unused
n_rows_r22 = n_cols_used
R22 = R[:, n_rows_r12:, n_cols_unused:]
# weighting
R22 = weights_responses[:, None, None] * R22
# assemble compressed coefficient matrix A_fast by row-stacking individual upper triangular matrices R22
dim0 = n_responses * n_rows_r22 + 1
A_fast = np.empty((dim0, n_cols_used))
A_fast[:-1, :] = R22.reshape((dim0 - 1, n_cols_used))
# extra equation to avoid trivial solution
A_fast[-1, idx_res_real] = np.sum(coeff_real.real, axis=0)
A_fast[-1, idx_res_complex_re] = np.sum(coeff_complex_re.real, axis=0)
A_fast[-1, idx_res_complex_im] = np.sum(coeff_complex_im.real, axis=0)
A_fast[-1, -1] = n_freqs
# weighting
A_fast[-1, :] = weight_extra * A_fast[-1, :]
scaling = 1 / np.linalg.norm(A_fast, axis=0)
A_fast = scaling * A_fast
# right hand side vector (weighted)
b = np.zeros(dim0)
b[-1] = weight_extra * n_samples
# check condition of the linear system
cond = np.linalg.cond(A_fast)
full_rank = np.min(A_fast.shape)
# solve least squares for real parts
x, residuals, rank, singular_vals = np.linalg.lstsq(A_fast, b, rcond=None)
x = scaling * x
# rank deficiency
rank_deficiency = full_rank - rank
# assemble individual result vectors from single LS result x
c_res = x[:-1]
d_res = x[-1]
# check if d_res is suited for zeros calculation
tol_res = 1e-8
if np.abs(d_res) < tol_res:
# d_res is too small, discard solution and proceed the |d_res| = tol_res
logger.info(f'Replacing d_res solution as it was too small ({d_res}).')
d_res = tol_res * (d_res / np.abs(d_res))
# build test matrix H, which will hold the new poles as eigenvalues
H = np.zeros((len(c_res), len(c_res)))
poles_real = poles[np.nonzero(real_mask)]
poles_cplx = poles[np.nonzero(~real_mask)]
H[idx_res_real, idx_res_real] = poles_real.real
H[idx_res_real] -= c_res / d_res
H[idx_res_complex_re, idx_res_complex_re] = poles_cplx.real
H[idx_res_complex_re, idx_res_complex_im] = poles_cplx.imag
H[idx_res_complex_im, idx_res_complex_re] = -1 * poles_cplx.imag
H[idx_res_complex_im, idx_res_complex_im] = poles_cplx.real
H[idx_res_complex_re] -= 2 * c_res / d_res
poles_new = np.linalg.eigvals(H)
# replace poles for next iteration
# complex poles need to come in complex conjugate pairs; append only the positive part
poles = poles_new[np.nonzero(poles_new.imag >= 0)]
# flip real part of unstable poles (real part needs to be negative for stability)
poles.real = -1 * np.abs(poles.real)
return poles, d_res, cond, rank_deficiency, residuals, singular_vals
@staticmethod
def _fit_residues(poles, freqs, freq_responses, fit_constant, fit_proportional, enforce_dc=True):
n_responses, n_freqs = np.shape(freq_responses)
omega = 2 * np.pi * freqs
s = 1j * omega
# We need two columns for complex poles and one column for real poles in A matrix.
# This number equals the model order.
n_cols = VectorFitting.get_model_order(poles)
idx_constant = []
idx_proportional = []
if fit_constant:
idx_constant = [n_cols]
n_cols += 1
if fit_proportional:
idx_proportional = [n_cols]
n_cols += 1
# list of indices in 'poles' with real and with complex values
real_mask = poles.imag == 0
idx_poles_real = np.nonzero(real_mask)[0]
idx_poles_complex = np.nonzero(~real_mask)[0]
# find and save indices of real and complex poles in the poles list
i = 0
idx_res_real = []
idx_res_complex_re = []
idx_res_complex_im = []
for pole in poles:
if pole.imag == 0:
idx_res_real.append(i)
i += 1
else:
idx_res_complex_re.append(i)
idx_res_complex_im.append(i + 1)
i += 2
# complex coefficient matrix of shape [N_freqs, n_cols]
# layout of each row:
# [pole1, pole2, ..., (constant), (proportional)]
A = np.empty((n_freqs, n_cols), dtype=complex)
# calculate coefficients for real and complex residues in the solution vector
#
# real pole-residue term (r = r', p = p'):
# fractional term is r' / (s - p')
# coefficient for r' is 1 / (s - p')
coeff_real = 1 / (s[:, None] - poles[None, idx_poles_real])
# complex-conjugate pole-residue pair (r = r' + j r'', p = p' + j p''):
# fractional term is r / (s - p) + conj(r) / (s - conj(p))
# = [1 / (s - p) + 1 / (s - conj(p))] * r' + [1j / (s - p) - 1j / (s - conj(p))] * r''
# coefficient for r' is 1 / (s - p) + 1 / (s - conj(p))
# coefficient for r'' is 1j / (s - p) - 1j / (s - conj(p))
coeff_complex_re = (1 / (s[:, None] - poles[None, idx_poles_complex]) +
1 / (s[:, None] - np.conj(poles[None, idx_poles_complex])))
coeff_complex_im = (1j / (s[:, None] - poles[None, idx_poles_complex]) -
1j / (s[:, None] - np.conj(poles[None, idx_poles_complex])))
# part 1: first sum of rational functions (variable c)
A[:, idx_res_real] = coeff_real
A[:, idx_res_complex_re] = coeff_complex_re
A[:, idx_res_complex_im] = coeff_complex_im
# part 2: constant (variable d) and proportional term (variable e)
A[:, idx_constant] = 1
A[:, idx_proportional] = s[:, None]
scaling = 1 / np.linalg.norm(A, axis=0)
A = scaling * A
# DC POINT ENFORCEMENT
if enforce_dc and freqs[0] == 0.0:
# data contains the dc point; enforce dc point via linear equality constraint:
# 1: remove one variable from the solution vector (constant term, if possible).
# 2: solve remaining linear system (without data at dc) with regular least-squares, as usual. the size of
# the solution vector, the coefficient matrix, and the right-hand side are reduced by 1
# 3: calculate the removed variable (constant term) with the data from the dc point
#
# linear system: A * x = b
# solution vector x contains the unknown residues
# right-hand side b contains the frequency response to be fitted, sorted by ascending frequency (dc first)
# coefficient matrix A and vector b are split: A = [[A11, A12], [A21, A22]], b = [[b1], [b2]]
# [A11, A12] is the first row used later for dc enforcement
# A21 is a column vector, which is not required anymore
# A22 is the rest of the matrix for usual least-squares fitting
# indexing mask of constrained variable in the columns of matrix A
mask_idx_constrained = np.zeros(n_cols, dtype=bool)
if fit_constant:
# use constant term for constrained
mask_idx_constrained[idx_constant] = True
else:
# constant term not present; arbitrarily use first residue instead
mask_idx_constrained[0] = True
A22 = A[1:, ~mask_idx_constrained]
b2 = freq_responses[:, 1:]
A22_ri = np.vstack((A22.real, A22.imag))
b22_ri = np.hstack((b2.real, b2.imag))
logger.info(f'Condition number of coefficient matrix = {int(np.linalg.cond(A22_ri))}')
# solve least-squares and obtain results as stack of real part vector and imaginary part vector
x2, residuals, rank, singular_vals = np.linalg.lstsq(A22_ri, b22_ri.T, rcond=None)
# solve for x1 using the first row (the dc row):
b1 = freq_responses[:, 0]
A11 = A[0, mask_idx_constrained]
A12 = A[0, ~mask_idx_constrained]
x1 = np.real(1 / A11 * (b1 - np.dot(A12, x2)))
# reassemble x from x1 and x2
x = np.empty((n_cols, n_responses))
x[mask_idx_constrained, :] = x1
x[~mask_idx_constrained, :] = x2
else:
# dc point not included; use and solve the entire linear system with least-squares
A_ri = np.vstack((A.real, A.imag))
b_ri = np.hstack((freq_responses.real, freq_responses.imag))
logger.info(f'Condition number of coefficient matrix = {int(np.linalg.cond(A_ri))}')
# solve least-squares and obtain results as stack of real part vector and imaginary part vector
x, residuals, rank, singular_vals = np.linalg.lstsq(A_ri, b_ri.T, rcond=None)
x = scaling[:, None] * x
# extract residues from solution vector and align them with poles to get matching pole-residue pairs
residues = np.empty((len(freq_responses), len(poles)), dtype=complex)
residues[:, idx_poles_real] = np.transpose(x[idx_res_real])
residues[:, idx_poles_complex] = np.transpose(x[idx_res_complex_re] + 1j * x[idx_res_complex_im])
# extract constant and proportional coefficient, if available
if fit_constant:
constant_coeff = x[idx_constant][0]
else:
constant_coeff = np.zeros(n_responses)
if fit_proportional:
proportional_coeff = x[idx_proportional][0]
else:
proportional_coeff = np.zeros(n_responses)
return residues, constant_coeff, proportional_coeff, residuals, rank, singular_vals
@staticmethod
def _get_delta(poles, residues, constant_coeff, proportional_coeff, freqs, freq_responses, weights_responses):
s = 2j * np.pi * freqs
model = proportional_coeff[:, None] * s + constant_coeff[:, None]
for i, pole in enumerate(poles):
if np.imag(pole) == 0.0:
# real pole
model += residues[:, i, None] / (s - pole)
else:
# complex conjugate pole
model += (residues[:, i, None] / (s - pole) +
np.conjugate(residues[:, i, None]) / (s - np.conjugate(pole)))
# compute weighted error and return global maximum at each frequency across all individual responses
delta = np.abs(model - freq_responses) * weights_responses[:, None]
return np.max(delta, axis=0)
@staticmethod
def _find_error_bands(freqs, delta):
# compute error bands (maximal fit deviation)
delta_mean = np.mean(delta)
error = delta - delta_mean
# find limits of error bands
idx_limits = np.nonzero(np.diff(error > 0))[0]
idx_limits_filtered = idx_limits[np.diff(idx_limits, prepend=0) > 2]
freqs_bands = np.split(freqs, idx_limits_filtered)
error_bands = np.split(error, idx_limits_filtered)
n_bands = len(freqs_bands)
idx_freqs_start = []
idx_freqs_stop = []
idx_freqs_max = []
delta_mean_bands = []
for i_band in range(n_bands):
band_error_mean = np.mean(error_bands[i_band])
if band_error_mean > 0:
# band with excess error;
# find frequency index of error maximum inside this band
i_band_max_error = np.argmax(error_bands[i_band])
i_start = np.nonzero(freqs == freqs_bands[i_band][0])[0][0]
i_stop = np.nonzero(freqs == freqs_bands[i_band][-1])[0][0]
i_max = np.nonzero(freqs == freqs_bands[i_band][i_band_max_error])[0][0]
idx_freqs_start.append(i_start)
idx_freqs_stop.append(i_stop)
idx_freqs_max.append(i_max)
delta_mean_bands.append(np.mean(delta[i_start:i_stop]))
idx_freqs_start = np.array(idx_freqs_start)
idx_freqs_stop = np.array(idx_freqs_stop)
idx_freqs_max = np.array(idx_freqs_max)
delta_mean_bands = np.array(delta_mean_bands)
i_sort = np.flip(np.argsort(delta_mean_bands))
return idx_freqs_start[i_sort], idx_freqs_stop[i_sort], idx_freqs_max[i_sort], delta_mean_bands[i_sort]
def get_rms_error(self, i=-1, j=-1, parameter_type: str = 's'):
r"""
Returns the root-mean-square (rms) error magnitude of the fit, i.e.
:math:`\sqrt{ \mathrm{mean}(|S - S_\mathrm{fit} |^2) }`,
either for an individual response :math:`S_{i+1,j+1}` or for larger slices of the network.
Parameters
----------
i : int, optional
Row indices of the responses to be evaluated. Either a single row selected by an integer
:math:`i \in [0, N_\mathrm{ports}-1]`, or multiple rows selected by a list of integers, or all rows
selected by :math:`i = -1` (*default*).
j : int, optional
Column indices of the responses to be evaluated. Either a single column selected by an integer
:math:`j \in [0, N_\mathrm{ports}-1]`, or multiple columns selected by a list of integers, or all columns
selected by :math:`j = -1` (*default*).
parameter_type: str, optional
Representation type of the fitted frequency responses. Either *scattering* (:attr:`s` or :attr:`S`),
*impedance* (:attr:`z` or :attr:`Z`) or *admittance* (:attr:`y` or :attr:`Y`).
Returns
-------
rms_error : ndarray
The rms error magnitude between the vector fitted model and the original network data.
Raises
------
ValueError
If the specified parameter representation type is not :attr:`s`, :attr:`z`, nor :attr:`y`.
"""
if i == -1:
list_i = range(self.network.nports)
elif isinstance(i, int):
list_i = [i]
else:
list_i = i
if j == -1:
list_j = range(self.network.nports)
elif isinstance(j, int):
list_j = [j]
else:
list_j = j
if parameter_type.lower() == 's':
nw_responses = self.network.s
elif parameter_type.lower() == 'z':
nw_responses = self.network.z
elif parameter_type.lower() == 'y':
nw_responses = self.network.y
else:
raise ValueError(f'Invalid parameter type `{parameter_type}`. Valid options: `s`, `z`, or `y`')
error_mean_squared = 0
for i in list_i:
for j in list_j:
nw_ij = nw_responses[:, i, j]
fit_ij = self.get_model_response(i, j, self.network.f)
error_mean_squared += np.mean(np.square(np.abs(nw_ij - fit_ij)))
return np.sqrt(error_mean_squared)
def _get_ABCDE(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
Private method.
Returns the real-valued system matrices of the state-space representation of the current rational model, as
defined in [#]_.
Returns
-------
A : ndarray
State-space matrix A holding the poles on the diagonal as real values with imaginary parts on the sub-
diagonal
B : ndarray
State-space matrix B holding coefficients (1, 2, or 0), depending on the respective type of pole in A
C : ndarray
State-space matrix C holding the residues
D : ndarray
State-space matrix D holding the constants
E : ndarray
State-space matrix E holding the proportional coefficients (usually 0 in case of fitted S-parameters)
Raises
------
ValueError
If the model parameters have not been initialized (by running :func:`vector_fit()` or :func:`read_npz()`).
References
----------
.. [#] B. Gustavsen and A. Semlyen, "Fast Passivity Assessment for S-Parameter Rational Models Via a Half-Size
Test Matrix," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 2701-2708,
Dec. 2008, DOI: 10.1109/TMTT.2008.2007319.
"""
# initial checks
if self.poles is None:
raise ValueError('self.poles = None; nothing to do. You need to run vector_fit() first.')
if self.residues is None:
raise ValueError('self.residues = None; nothing to do. You need to run vector_fit() first.')
if self.proportional_coeff is None:
raise ValueError('self.proportional_coeff = None; nothing to do. You need to run vector_fit() first.')
if self.constant_coeff is None:
raise ValueError('self.constant_coeff = None; nothing to do. You need to run vector_fit() first.')
# assemble real-valued state-space matrices A, B, C, D, E from fitted complex-valued pole-residue model
# determine size of the matrix system
n_ports = int(np.sqrt(len(self.constant_coeff)))
n_poles_real = 0
n_poles_cplx = 0
for pole in self.poles:
if np.imag(pole) == 0.0:
n_poles_real += 1
else:
n_poles_cplx += 1
n_matrix = (n_poles_real + 2 * n_poles_cplx) * n_ports
# state-space matrix A holds the poles on the diagonal as real values with imaginary parts on the sub-diagonal
# state-space matrix B holds coefficients (1, 2, or 0), depending on the respective type of pole in A
# assemble A = [[poles_real, 0, 0],
# [0, real(poles_cplx), imag(poles_cplx],
# [0, -imag(poles_cplx), real(poles_cplx]]
A = np.identity(n_matrix)
B = np.zeros(shape=(n_matrix, n_ports))
i_A = 0 # index on diagonal of A
for j in range(n_ports):
for pole in self.poles:
if np.imag(pole) == 0.0:
# adding a real pole
A[i_A, i_A] = np.real(pole)
B[i_A, j] = 1
i_A += 1
else:
# adding a complex-conjugate pole
A[i_A, i_A] = np.real(pole)
A[i_A, i_A + 1] = np.imag(pole)
A[i_A + 1, i_A] = -1 * np.imag(pole)
A[i_A + 1, i_A + 1] = np.real(pole)
B[i_A, j] = 2
i_A += 2
# state-space matrix C holds the residues
# assemble C = [[R1.11, R1.12, R1.13, ...], [R2.11, R2.12, R2.13, ...], ...]
C = np.zeros(shape=(n_ports, n_matrix))
for i in range(n_ports):
for j in range(n_ports):
# i: row index
# j: column index
i_response = i * n_ports + j
j_residues = 0
for zero in self.residues[i_response]:
if np.imag(zero) == 0.0:
C[i, j * (n_poles_real + 2 * n_poles_cplx) + j_residues] = np.real(zero)
j_residues += 1
else:
C[i, j * (n_poles_real + 2 * n_poles_cplx) + j_residues] = np.real(zero)
C[i, j * (n_poles_real + 2 * n_poles_cplx) + j_residues + 1] = np.imag(zero)
j_residues += 2
# state-space matrix D holds the constants
# assemble D = [[d11, d12, ...], [d21, d22, ...], ...]
D = np.zeros(shape=(n_ports, n_ports))
for i in range(n_ports):
for j in range(n_ports):
# i: row index
# j: column index
i_response = i * n_ports + j
D[i, j] = self.constant_coeff[i_response]
# state-space matrix E holds the proportional coefficients (usually 0 in case of fitted S-parameters)
# assemble E = [[e11, e12, ...], [e21, e22, ...], ...]
E = np.zeros(shape=(n_ports, n_ports))
for i in range(n_ports):
for j in range(n_ports):
# i: row index
# j: column index
i_response = i * n_ports + j
E[i, j] = self.proportional_coeff[i_response]
return A, B, C, D, E
@staticmethod
def _get_s_from_ABCDE(freqs: np.ndarray,
A: np.ndarray, B: np.ndarray, C: np.ndarray, D: np.ndarray, E: np.ndarray) -> np.ndarray:
"""
Private method.
Returns the S-matrix of the vector fitted model calculated from the real-valued system matrices of the state-
space representation, as provided by `_get_ABCDE()`.
Parameters
----------
freqs : ndarray
Frequencies (in Hz) at which to calculate the S-matrices.
A : ndarray
B : ndarray
C : ndarray
D : ndarray
E : ndarray
Returns
-------
ndarray
Complex-valued S-matrices (fxNxN) calculated at frequencies `freqs`.
"""
dim_A = np.shape(A)[0]
stsp_poles = np.linalg.inv(2j * np.pi * freqs[:, None, None] * np.identity(dim_A)[None, :, :] - A[None, :, :])
stsp_S = np.matmul(np.matmul(C, stsp_poles), B)
stsp_S += D + 2j * np.pi * freqs[:, None, None] * E
return stsp_S
def passivity_test(self, parameter_type: str = 's') -> np.ndarray:
"""
Evaluates the passivity of reciprocal vector fitted models by means of a half-size test matrix [#]_. Any
existing frequency bands of passivity violations will be returned as a sorted list.
Parameters
----------
parameter_type: str, optional
Representation type of the fitted frequency responses. Either *scattering* (:attr:`s` or :attr:`S`),
*impedance* (:attr:`z` or :attr:`Z`) or *admittance* (:attr:`y` or :attr:`Y`). Currently, only scattering
parameters are supported for passivity evaluation.
Raises
------
NotImplementedError
If the function is called for `parameter_type` different than `S` (scattering).
ValueError
If the function is used with a model containing nonzero proportional coefficients.
Returns
-------
violation_bands : ndarray
NumPy array with frequency bands of passivity violation:
`[[f_start_1, f_stop_1], [f_start_2, f_stop_2], ...]`.
See Also
--------
is_passive : Query the model passivity as a boolean value.
passivity_enforce : Enforces the passivity of the vector fitted model, if required.
Examples
--------
Load and fit the `Network`, then evaluate the model passivity:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.vector_fit(n_poles_real=1, n_poles_cmplx=4)
>>> violations = vf.passivity_test()
References
----------
.. [#] B. Gustavsen and A. Semlyen, "Fast Passivity Assessment for S-Parameter Rational Models Via a Half-Size
Test Matrix," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 2701-2708,
Dec. 2008, DOI: 10.1109/TMTT.2008.2007319.
"""
if parameter_type.lower() != 's':
raise NotImplementedError('Passivity testing is currently only supported for scattering (S) parameters.')
if parameter_type.lower() == 's' and len(np.flatnonzero(self.proportional_coeff)) > 0:
raise ValueError('Passivity testing of scattering parameters with nonzero proportional coefficients does '
'not make any sense; you need to run vector_fit() with option `fit_proportional=False` '
'first.')
# # the network needs to be reciprocal for this passivity test method to work: S = transpose(S)
# if not np.allclose(self.residues, np.transpose(self.residues)) or \
# not np.allclose(self.constant_coeff, np.transpose(self.constant_coeff)) or \
# not np.allclose(self.proportional_coeff, np.transpose(self.proportional_coeff)):
# logger.error('Passivity testing with unsymmetrical model parameters is not supported. '
# 'The model needs to be reciprocal.')
# return
# get state-space matrices
A, B, C, D, E = self._get_ABCDE()
n_ports = np.shape(D)[0]
# build half-size test matrix P from state-space matrices A, B, C, D
inv_neg = np.linalg.inv(D - np.identity(n_ports))
inv_pos = np.linalg.inv(D + np.identity(n_ports))
prod_neg = np.matmul(np.matmul(B, inv_neg), C)
prod_pos = np.matmul(np.matmul(B, inv_pos), C)
P = np.matmul(A - prod_neg, A - prod_pos)
# extract eigenvalues of P
P_eigs = np.linalg.eigvals(P)
# purely imaginary square roots of eigenvalues identify frequencies (2*pi*f) of borders of passivity violations
freqs_violation = []
for sqrt_eigenval in np.sqrt(P_eigs, dtype=complex):
if np.real(sqrt_eigenval) == 0.0:
freqs_violation.append(np.imag(sqrt_eigenval) / 2 / np.pi)
# include dc (0) unless it's already included
if len(np.nonzero(np.array(freqs_violation) == 0.0)[0]) == 0:
freqs_violation.append(0.0)
# sort the output from lower to higher frequencies
freqs_violation = np.sort(freqs_violation)
# identify frequency bands of passivity violations
# sweep the bands between crossover frequencies and identify bands of passivity violations
violation_bands = []
for i, freq in enumerate(freqs_violation):
if i == len(freqs_violation) - 1:
# last band stops always at infinity
f_start = freq
f_stop = np.inf
f_center = 1.1 * f_start # 1.1 is chosen arbitrarily to have any frequency for evaluation
else:
# intermediate band between this frequency and the previous one
f_start = freq
f_stop = freqs_violation[i + 1]
f_center = 0.5 * (f_start + f_stop)
# calculate singular values at the center frequency between crossover frequencies to identify violations
s_center = self._get_s_from_ABCDE(np.array([f_center]), A, B, C, D, E)
sigma = np.linalg.svd(s_center[0], compute_uv=False)
passive = True
for singval in sigma:
if singval > 1:
# passivity violation in this band
passive = False
if not passive:
# add this band to the list of passivity violations
if violation_bands is None:
violation_bands = [[f_start, f_stop]]
else:
violation_bands.append([f_start, f_stop])
return np.array(violation_bands)
def is_passive(self, parameter_type: str = 's') -> bool:
"""
Returns the passivity status of the model as a boolean value.
Parameters
----------
parameter_type : str, optional
Representation type of the fitted frequency responses. Either *scattering* (:attr:`s` or :attr:`S`),
*impedance* (:attr:`z` or :attr:`Z`) or *admittance* (:attr:`y` or :attr:`Y`). Currently, only scattering
parameters are supported for passivity evaluation.
Returns
-------
passivity : bool
:attr:`True` if model is passive, else :attr:`False`.
See Also
--------
passivity_test : Verbose passivity evaluation routine.
passivity_enforce : Enforces the passivity of the vector fitted model, if required.
Examples
--------
Load and fit the `Network`, then check whether or not the model is passive:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.vector_fit(n_poles_real=1, n_poles_cmplx=4)
>>> vf.is_passive() # returns True or False
"""
viol_bands = self.passivity_test(parameter_type)
if len(viol_bands) == 0:
return True
else:
return False
def passivity_enforce(self, n_samples: int = 200, f_max: float = None, parameter_type: str = 's',
preserve_dc: bool = True) -> None:
"""
Enforces the passivity of the vector fitted model, if required. This is an implementation of the methods
presented in [#]_ and [#]_ using singular value perturbation. To preserve the dc point in the model during
passivity enforcement, only the residues are perturbed, not the constant term.
Parameters
----------
n_samples : int, optional
Number of linearly spaced frequency samples at which passivity will be evaluated and enforced.
(Default: 200). If there are very narrow frequency bands of passivity violations, a sufficiently large
number of frequency samples is required.
f_max : float or None, optional
Highest frequency of interest for the passivity enforcement (in Hz, not rad/s). This limit usually
equals the highest sample frequency of the fitted Network. If None, the highest frequency in
:attr:`self.network` is used, which must not be None is this case. If `f_max` is not None, it overrides the
highest frequency in :attr:`self.network`.
parameter_type : str, optional
Representation type of the fitted frequency responses. Either *scattering* (:attr:`s` or :attr:`S`),
*impedance* (:attr:`z` or :attr:`Z`) or *admittance* (:attr:`y` or :attr:`Y`). Currently, only scattering
parameters are supported for passivity evaluation.
preserve_dc : bool, optional
Enables dc point preservation during passivity enforcement. This only works if the fitted model is already
passive at the dc point, which is not always the case. If it is not passive, dc point preservation is
disabled and passivity is also enforced on the dc point.
Returns
-------
None
Raises
------
NotImplementedError
If the function is called for `parameter_type` different than `S` (scattering).
ValueError
If the function is used with a model containing nonzero proportional coefficients. Or if both `f_max` and
:attr:`self.network` are None.
See Also
--------
is_passive : Returns the passivity status of the model as a boolean value.
passivity_test : Verbose passivity evaluation routine.
plot_passivation : Convergence plot for passivity enforcement iterations.
Examples
--------
Load and fit the `Network`, then enforce the passivity of the model:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.vector_fit(n_poles_real=1, n_poles_cmplx=4)
>>> vf.passivity_enforce() # won't do anything if model is already passive
References
----------
.. [#] T. Dhaene, D. Deschrijver and N. Stevens, "Efficient Algorithm for Passivity Enforcement of S-Parameter-
Based Macromodels," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 2, pp. 415-420,
Feb. 2009, DOI: 10.1109/TMTT.2008.2011201
.. [#] D. Deschrijver and T. Dhaene, "DC-Preserving Passivity Enforcement for S-Parameter Based Macromodels,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 4, pp. 923-928, April 2010,
DOI: 10.1109/TMTT.2010.2042556
"""
if parameter_type.lower() != 's':
raise NotImplementedError('Passivity testing is currently only supported for scattering (S) parameters.')
if parameter_type.lower() == 's' and len(np.flatnonzero(self.proportional_coeff)) > 0:
raise ValueError('Passivity testing of scattering parameters with nonzero proportional coefficients does '
'not make any sense; you need to run vector_fit() with option `fit_proportional=False` '
'first.')
# always run passivity test first; this will write 'self.violation_bands'
if self.is_passive():
# model is already passive; do nothing and return
logger.info('Passivity enforcement: The model is already passive. Nothing to do.')
return
# check dc passivity and find the highest relevant frequency; either
# 1) the highest frequency of passivity violation (f_viol_max)
# or
# 2) the highest fitting frequency (f_samples_max)
violation_bands = self.passivity_test()
f_viol_min = violation_bands[0, 0]
f_viol_max = violation_bands[-1, 1]
# check passivity at the dc point; 1) in the model, 2) in the original data, if available
if preserve_dc and f_viol_min == 0.0:
# cannot preserve a non-passive dc point during passivity enforcement
preserve_dc = False
hint = ''
if self.network is not None:
if self.network.f[0] == 0.0 and not self.network.is_passive():
hint = '\nHint: The dc point in the original network data is already non-passive.'
warnings.warn('Passivity enforcement: The dc point in the model is not passive. Cannot '
f'preserve the dc point during passivity enforcement. {hint}', UserWarning, stacklevel=2)
if f_max is None:
if self.network is None:
raise RuntimeError('Both `self.network` and parameter `f_max` are None. One of them is required to '
'specify the frequency band of interest for the passivity enforcement.')
else:
f_samples_max = self.network.f[-1]
else:
f_samples_max = f_max
# deal with unbounded violation interval (f_viol_max == np.inf)
if np.isinf(f_viol_max):
f_viol_max = 1.5 * violation_bands[-1, 0]
warnings.warn(
'Passivity enforcement: The passivity violations of this model are unbounded. '
'Passivity enforcement might still work, but consider re-fitting with a lower number of poles '
'and/or without the constants (`fit_constant=False`) if the results are not satisfactory.',
UserWarning, stacklevel=2)
# the frequency band for the passivity evaluation is from dc to 20% above the highest relevant frequency
if f_viol_max < f_samples_max:
f_eval_max = 1.2 * f_samples_max
else:
f_eval_max = 1.2 * f_viol_max
# let's not automatically adjust n_samples. The calculated number can
# be huge (>100k). Combined with a high number of poles in the model, this can bust the memory.
freqs_eval = np.linspace(0, f_eval_max, n_samples)
# get model state-space matrices
A, B, C_t, D, E = self._get_ABCDE()
dim_A = np.shape(A)[0]
# ASYMPTOTIC PASSIVITY ENFORCEMENT
# check if constant term has been fitted (not zero)
# a model without the constant term is always asymptotically passive
if len(np.nonzero(D)[0]) != 0:
# D was fitted;
# asymptotic passivity needs to be checked and enforced, if violated.
# for dc preservation, the asymptotic passivity violations in D are compensated using C
# D is not touched, because it contains the dc point ( lim s --> {inf S(s)} = D)
u, sigma, vh = np.linalg.svd(D, compute_uv=True)
# find and perturb singular values that cause passivity violations
# sigma_viol = sigma * upsilon - psi with
# upsilon[sigma > delta] = 1
# upsilon[sigma <= delta] = 0
# psi[sigma > delta] = delta
# psi[sigma <= delta] = 0
# (implemented below in a more compact form)
delta = 1
idx_viol = np.nonzero(sigma > delta)
sigma_viol = np.zeros_like(sigma)
sigma_viol[idx_viol] = sigma[idx_viol] - delta
# calculate S_viol from perturbed sigma and previous U and Vh
S_viol = np.dot(u * sigma_viol, vh)
# find new set of residues C_viol by solving underdetermined least-squares problem
# S_viol = C_viol * B
#
# mind the transpose of the system to compensate for the exchanged order of matrix multiplication:
# S_viol = C_viol * B <==> transpose(S_viol) = transpose(B) * transpose(C_viol)
C_viol, residuals, rank, singular_vals = np.linalg.lstsq(np.vstack((B.T.real, B.T.imag)),
np.vstack((S_viol.T.real, S_viol.T.imag)),
rcond=None)
C_t -= C_viol.T
# UNIFORM PASSIVITY ENFORCEMENT
# preparing coefficient matrix; can be reused in every iteration
# S(s_eval) = D_t + s_eval * C_t * inv(s_eval * I - A) * B
# = D_t + s_eval * C_t * A_freq * B
# with
# A_freq = inv(s_eval * I - A)
# s_eval = j * omega_eval = 2j * pi * freqs_eval
A_freq = np.linalg.inv(2j * np.pi * freqs_eval[:, None, None] * np.identity(dim_A)[None, :, :] - A[None, :, :])
# construct coefficient matrix for least-squares residue fitting (C_viol)
coeffs = np.matmul(A_freq, B)
C_viol = np.empty_like(C_t)
n_ports = np.shape(C_viol)[0]
model_order = self.get_model_order(self.poles)
# predefined tolerance parameter (users should not need to change this)
delta_threshold = 0.999
sigma_max = 1.1 # just to enter iteration loop for the first time
# iterative compensation of passivity violations
t = 0
self.history_max_sigma = []
while t < self.max_iterations and sigma_max > 1.0:
logger.info(f'Passivity enforcement; Iteration {t + 1}')
# calculate S-matrix of the model at freqs_eval (shape fxNxN)
#S_eval = self._get_s_from_ABCDE(freqs_eval, A, B, C_t, D, E)
S_eval = D + np.matmul(C_t, coeffs) # much faster!
# singular value decomposition,
# shape(u) = (n_samples, n_ports, n_ports)
# shape(sigma) = (n_samples, n_ports)
# shape(vh) = (n_samples, n_ports, n_ports)
u, sigma, vh = np.linalg.svd(S_eval)
# keep track of the greatest singular value in every iteration step
sigma_max = np.amax(sigma)
self.history_max_sigma.append(sigma_max)
if sigma_max > delta_threshold:
delta = delta_threshold
else:
delta = sigma_max
# find and perturb singular values that cause passivity violations
# sigma_viol = sigma * upsilon - psi with
# upsilon[sigma > delta] = 1
# upsilon[sigma <= delta] = 0
# psi[sigma > delta] = delta
# psi[sigma <= delta] = 0
# (implemented below in a more compact form)
idx_viol = np.nonzero(sigma > delta)
sigma_viol = np.zeros_like(sigma)
sigma_viol[idx_viol] = sigma[idx_viol] - delta
S_viol = np.matmul(u * sigma_viol[:, None, :], vh)
# stack frequency responses as a single vector
# stacking order (row-major):
# s11, s12, s13, ..., s21, s22, s23, ...
S_viol_stacked = []
for i in range(n_ports):
for j in range(n_ports):
S_viol_stacked.append(S_viol[:, i, j])
S_viol_stacked = np.array(S_viol_stacked)
# The existing method _fit_residues() can be use here to fit the violation residues. Enabling `fit_constant`
# in combination with `enforce_dc` removes the dc rows from the linear system and enforces the dc solution
# on the constant term. In case of dc preservation during passivity enforcement, we can ignore that constant
# term entirely and only use the violation residues.
# If dc preservation is disabled, we could also perturb the constant term. This is not currently done. In
# this new method, we always only perturb the residues. Disabling `fit_constant` and `preserve_dc` in this
# case will solve for the residues without the constant term in the linear system.
C_viol_stacked, D_viol_stacked, E_viol_stacked, residuals, rank, singular_vals = self._fit_residues(
self.poles, freqs_eval, S_viol_stacked, fit_constant=preserve_dc, fit_proportional=False,
enforce_dc=preserve_dc)
# reshape C_viol into state-space format: [[R1.11, R2.11, R3.11, ..., R1.1N, R2.1N, R3.1N, ...],
# [R1.21, R2.21, R3.21, ..., R1.2N, R3.2N, R3.2N, ...],
# ...
# [R1.N1, R2.N1, R3.N1, ..., R1.NN, R3.NN, R3.NN, ...]]
for i_port in range(n_ports):
for j_port in range(n_ports):
j_residues = 0
for residue in C_viol_stacked[i_port * n_ports + j_port]:
if np.imag(residue) == 0.0:
C_viol[i_port, j_port * model_order + j_residues] = np.real(residue)
j_residues += 1
else:
C_viol[i_port, j_port * model_order + j_residues] = np.real(residue)
C_viol[i_port, j_port * model_order + j_residues + 1] = np.imag(residue)
j_residues += 2
# perturb residues by subtracting respective row and column in C_t
C_t = C_t - C_viol
t += 1
# PASSIVATION PROCESS DONE; model is either passive or max. number of iterations have been exceeded
if t == self.max_iterations:
warnings.warn('Passivity enforcement: Aborting after the max. number of iterations has been '
'exceeded.', RuntimeWarning, stacklevel=2)
# save/update model parameters (perturbed residues)
self.history_max_sigma = np.array(self.history_max_sigma)
n_ports = np.shape(D)[0]
for i in range(n_ports):
k = 0 # column index in C_t
for j in range(n_ports):
i_response = i * n_ports + j
z = 0 # column index self.residues
for pole in self.poles:
if np.imag(pole) == 0.0:
# real pole --> real residue
self.residues[i_response, z] = C_t[i, k]
k += 1
else:
# complex-conjugate pole --> complex-conjugate residue
self.residues[i_response, z] = C_t[i, k] + 1j * C_t[i, k + 1]
k += 2
z += 1
# run final passivity test to make sure passivation was successful
violation_bands = self.passivity_test()
if len(violation_bands) > 0:
# trying to determine the required number of evaluation samples based on the bandwidth and separation
# distance of the violation bands
violation_band_separation = np.diff(violation_bands.flat)
min_spacing_nonzero = np.amin(violation_band_separation[violation_band_separation != 0.0])
# we should need an absolute minimum of 1 sample in each violating frequency band.
# in practice, the frequency spacing should preferably be much more dense.
# let's recommend 2 samples per violation band.
n_samples_required = int(f_eval_max / min_spacing_nonzero * 2)
if n_samples_required > n_samples:
hint = f'Consider trying again with n_samples > {n_samples_required}.'
else:
hint = ''
warnings.warn('Passivity enforcement was not successful.\nModel is still non-passive in these '
f'frequency bands: {violation_bands}.\nTry running this routine again with a larger number of'
f' samples (parameter `n_samples`). This run was using n_samples = {n_samples}. {hint}',
RuntimeWarning, stacklevel=2)
def write_npz(self, path: str) -> None:
"""
Writes the model parameters in :attr:`poles`, :attr:`residues`,
:attr:`proportional_coeff` and :attr:`constant_coeff` to a labeled NumPy .npz file.
Parameters
----------
path : str
Target path without filename for the export. The filename will be added automatically based on the network
name in :attr:`network`
Returns
-------
None
See Also
--------
read_npz : Reads all model parameters from a .npz file
Examples
--------
Load and fit the `Network`, then export the model parameters to a .npz file:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.vector_fit(n_poles_real=1, n_poles_cmplx=4)
>>> vf.write_npz('./data/')
The filename depends on the network name stored in `nw_3port.name` and will have the prefix `coefficients_`, for
example `coefficients_my3port.npz`. The coefficients can then be read using NumPy's load() function:
>>> coeffs = numpy.load('./data/coefficients_my3port.npz')
>>> poles = coeffs['poles']
>>> residues = coeffs['residues']
>>> prop_coeffs = coeffs['proportionals']
>>> constants = coeffs['constants']
Alternatively, the coefficients can be read directly into a new instance of `VectorFitting`, see
:func:`read_npz`.
"""
if self.poles is None:
warnings.warn('Nothing to export; Poles have not been fitted.', RuntimeWarning, stacklevel=2)
return
if self.residues is None:
warnings.warn('Nothing to export; Residues have not been fitted.', RuntimeWarning, stacklevel=2)
return
if self.proportional_coeff is None:
warnings.warn('Nothing to export; Proportional coefficients have not been fitted.', RuntimeWarning,
stacklevel=2)
return
if self.constant_coeff is None:
warnings.warn('Nothing to export; Constants have not been fitted.', RuntimeWarning, stacklevel=2)
return
filename = self.network.name
logger.info(f'Exporting results as compressed NumPy array to {path}')
np.savez_compressed(os.path.join(path, f'coefficients_{filename}'),
poles=self.poles, residues=self.residues, proportionals=self.proportional_coeff,
constants=self.constant_coeff)
def read_npz(self, file: str) -> None:
"""
Reads all model parameters :attr:`poles`, :attr:`residues`, :attr:`proportional_coeff` and
:attr:`constant_coeff` from a labeled NumPy .npz file.
Parameters
----------
file : str
NumPy .npz file containing the parameters. See notes.
Returns
-------
None
Raises
------
ValueError
If the shapes of the coefficient arrays in the provided file are not compatible.
Notes
-----
The .npz file needs to include the model parameters as individual NumPy arrays (ndarray) labeled '*poles*',
'*residues*', '*proportionals*' and '*constants*'. The shapes of those arrays need to match the network
properties in :class:`network` (correct number of ports). Preferably, the .npz file was created by
:func:`write_npz`.
See Also
--------
write_npz : Writes all model parameters to a .npz file
Examples
--------
Create an empty `VectorFitting` instance (with or without the fitted `Network`) and load the model parameters:
>>> vf = skrf.VectorFitting(None)
>>> vf.read_npz('./data/coefficients_my3port.npz')
This can be useful to analyze or process a previous vector fit instead of fitting it again, which sometimes
takes a long time. For example, the model passivity can be evaluated and enforced:
>>> vf.passivity_enforce()
"""
with np.load(file) as data:
poles = data['poles']
# legacy support for exported residues
if 'zeros' in data:
# old .npz file from deprecated write_npz() with residues called 'zeros'
residues = data['zeros']
else:
# new .npz file from current write_npz()
residues = data['residues']
proportional_coeff = data['proportionals']
constant_coeff = data['constants']
n_ports = int(np.sqrt(len(constant_coeff)))
n_resp = n_ports ** 2
if np.shape(residues)[0] == np.shape(proportional_coeff)[0] == np.shape(constant_coeff)[0] == n_resp:
self.poles = poles
self.residues = residues
self.proportional_coeff = proportional_coeff
self.constant_coeff = constant_coeff
else:
raise ValueError('The shapes of the provided parameters are not compatible. The coefficient file needs '
'to contain NumPy arrays labeled `poles`, `residues`, `proportionals`, and '
'`constants`. Their shapes must match the number of network ports and the number of '
'frequencies.')
def get_model_response(self, i: int, j: int, freqs: Any = None) -> np.ndarray:
"""
Returns one of the frequency responses :math:`H_{i+1,j+1}` of the fitted model :math:`H`.
Parameters
----------
i : int
Row index of the response in the response matrix.
j : int
Column index of the response in the response matrix.
freqs : list of float or ndarray or None, optional
List of frequencies for the response plot. If None, the sample frequencies of the fitted network in
:attr:`network` are used.
Returns
-------
response : ndarray
Model response :math:`H_{i+1,j+1}` at the frequencies specified in `freqs` (complex-valued Numpy array).
Examples
--------
Get fitted S11 at 101 frequencies from 0 Hz to 10 GHz:
>>> import skrf
>>> vf = skrf.VectorFitting(skrf.data.ring_slot)
>>> vf.vector_fit(3, 0)
>>> s11_fit = vf.get_model_response(0, 0, numpy.linspace(0, 10e9, 101))
"""
if self.poles is None:
warnings.warn('Returning a zero-vector; Poles have not been fitted.',
RuntimeWarning, stacklevel=2)
return np.zeros_like(freqs)
if self.residues is None:
warnings.warn('Returning a zero-vector; Residues have not been fitted.',
RuntimeWarning, stacklevel=2)
return np.zeros_like(freqs)
if self.proportional_coeff is None:
warnings.warn('Returning a zero-vector; Proportional coefficients have not been fitted.',
RuntimeWarning, stacklevel=2)
return np.zeros_like(freqs)
if self.constant_coeff is None:
warnings.warn('Returning a zero-vector; Constants have not been fitted.',
RuntimeWarning, stacklevel=2)
return np.zeros_like(freqs)
if freqs is None:
freqs = np.linspace(np.amin(self.network.f), np.amax(self.network.f), 1000)
s = 2j * np.pi * np.array(freqs)
n_ports = int(np.sqrt(len(self.constant_coeff)))
i_response = i * n_ports + j
residues = self.residues[i_response]
resp = self.proportional_coeff[i_response] * s + self.constant_coeff[i_response]
for i, pole in enumerate(self.poles):
if np.imag(pole) == 0.0:
# real pole
resp += residues[i] / (s - pole)
else:
# complex conjugate pole
resp += residues[i] / (s - pole) + np.conjugate(residues[i]) / (s - np.conjugate(pole))
return resp
@axes_kwarg
def plot(self, component: str, i: int = -1, j: int = -1, freqs: Any = None,
parameter: str = 's', *, ax: Axes = None) -> Axes:
"""
Plots the specified component of the parameter :math:`H_{i+1,j+1}` in the fit, where :math:`H` is
either the scattering (:math:`S`), the impedance (:math:`Z`), or the admittance (:math:`H`) response specified
in `parameter`.
Parameters
----------
component : str
The component to be plotted. Must be one of the following items:
['db', 'mag', 'deg', 'deg_unwrap', 're', 'im'].
`db` for magnitude in decibels,
`mag` for magnitude in linear scale,
`deg` for phase in degrees (wrapped),
`deg_unwrap` for phase in degrees (unwrapped/continuous),
`re` for real part in linear scale,
`im` for imaginary part in linear scale.
i : int, optional
Row index of the response. `-1` to plot all rows.
j : int, optional
Column index of the response. `-1` to plot all columns.
freqs : list of float or ndarray or None, optional
List of frequencies for the response plot. If None, the sample frequencies of the fitted network in
:attr:`network` are used. This only works if :attr:`network` is not `None`.
parameter : str, optional
The network representation to be used. This is only relevant for the plot of the original sampled response
in :attr:`network` that is used for comparison with the fit. Must be one of the following items unless
:attr:`network` is `None`: ['s', 'z', 'y'] for *scattering* (default), *impedance*, or *admittance*.
ax : :class:`matplotlib.Axes` object or None
matplotlib axes to draw on. If None, the current axes is fetched with :func:`gca()`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Raises
------
ValueError
If the `freqs` parameter is not specified while the Network in :attr:`network` is `None`.
Also if `component` and/or `parameter` are not valid.
"""
components = ['db', 'mag', 'deg', 'deg_unwrap', 're', 'im']
if component.lower() in components:
if self.residues is None or self.poles is None:
raise RuntimeError('Poles and/or residues have not been fitted. Cannot plot the model response.')
n_ports = int(np.sqrt(np.shape(self.residues)[0]))
if i == -1:
list_i = range(n_ports)
elif isinstance(i, int):
list_i = [i]
else:
list_i = i
if j == -1:
list_j = range(n_ports)
elif isinstance(j, int):
list_j = [j]
else:
list_j = j
if self.network is not None:
# plot the original network response at each sample frequency (scatter plot)
if parameter.lower() == 's':
responses = self.network.s
elif parameter.lower() == 'z':
responses = self.network.z
elif parameter.lower() == 'y':
responses = self.network.y
else:
raise ValueError('The network parameter type is not valid, must be `s`, `z`, or `y`, '
f'got `{parameter}`.')
i_samples = 0
for i in list_i:
for j in list_j:
if i_samples == 0:
label = 'Samples'
else:
label = '_nolegend_'
i_samples += 1
y_vals = None
if component.lower() == 'db':
y_vals = 20 * np.log10(np.abs(responses[:, i, j]))
elif component.lower() == 'mag':
y_vals = np.abs(responses[:, i, j])
elif component.lower() == 'deg':
y_vals = np.rad2deg(np.angle(responses[:, i, j]))
elif component.lower() == 'deg_unwrap':
y_vals = np.rad2deg(np.unwrap(np.angle(responses[:, i, j])))
elif component.lower() == 're':
y_vals = np.real(responses[:, i, j])
elif component.lower() == 'im':
y_vals = np.imag(responses[:, i, j])
ax.scatter(self.network.f, y_vals, color='r', label=label)
if freqs is None:
# get frequency array from the network
freqs = self.network.f
if freqs is None:
raise ValueError(
'Neither `freqs` nor `self.network` is specified. Cannot plot model response without any '
'frequency information.')
# plot the fitted responses
y_label = ''
i_fit = 0
for i in list_i:
for j in list_j:
if i_fit == 0:
label = 'Fit'
else:
label = '_nolegend_'
i_fit += 1
y_model = self.get_model_response(i, j, freqs)
y_vals = None
if component.lower() == 'db':
y_vals = 20 * np.log10(np.abs(y_model))
y_label = 'Magnitude (dB)'
elif component.lower() == 'mag':
y_vals = np.abs(y_model)
y_label = 'Magnitude'
elif component.lower() == 'deg':
y_vals = np.rad2deg(np.angle(y_model))
y_label = 'Phase (Degrees)'
elif component.lower() == 'deg_unwrap':
y_vals = np.rad2deg(np.unwrap(np.angle(y_model)))
y_label = 'Phase (Degrees)'
elif component.lower() == 're':
y_vals = np.real(y_model)
y_label = 'Real Part'
elif component.lower() == 'im':
y_vals = np.imag(y_model)
y_label = 'Imaginary Part'
ax.plot(freqs, y_vals, color='k', label=label)
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel(y_label)
ax.legend(loc='best')
# only print title if a single response is shown
if i_fit == 1:
ax.set_title(f'Response i={i}, j={j}')
return ax
else:
raise ValueError(f'The specified component ("{component}") is not valid. Must be in {components}.')
def plot_s_db(self, *args, **kwargs) -> Axes:
"""
Plots the magnitude in dB of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('db', *args, **kwargs)``.
"""
return self.plot('db', *args, **kwargs)
def plot_s_mag(self, *args, **kwargs) -> Axes:
"""
Plots the magnitude in linear scale of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('mag', *args, **kwargs)``.
"""
return self.plot('mag', *args, **kwargs)
def plot_s_deg(self, *args, **kwargs) -> Axes:
"""
Plots the phase in degrees of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('deg', *args, **kwargs)``.
"""
return self.plot('deg', *args, **kwargs)
def plot_s_deg_unwrap(self, *args, **kwargs) -> Axes:
"""
Plots the unwrapped phase in degrees of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('deg_unwrap', *args, **kwargs)``.
"""
return self.plot('deg_unwrap', *args, **kwargs)
def plot_s_re(self, *args, **kwargs) -> Axes:
"""
Plots the real part of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('re', *args, **kwargs)``.
"""
return self.plot('re', *args, **kwargs)
def plot_s_im(self, *args, **kwargs) -> Axes:
"""
Plots the imaginary part of the scattering parameter response(s) in the fit.
Parameters
----------
*args : any, optional
Additional arguments to be passed to :func:`plot`.
**kwargs : dict, optional
Additional keyword arguments to be passed to :func:`plot`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Notes
-----
This simply calls ``plot('im', *args, **kwargs)``.
"""
return self.plot('im', *args, **kwargs)
@axes_kwarg
def plot_s_singular(self, freqs: Any = None, *, ax: Axes = None) -> Axes:
"""
Plots the singular values of the vector fitted S-matrix in linear scale.
Parameters
----------
freqs : list of float or ndarray or None, optional
List of frequencies for the response plot. If None, the sample frequencies of the fitted network in
:attr:`network` are used. This only works if :attr:`network` is not `None`.
ax : :class:`matplotlib.Axes` object or None
matplotlib axes to draw on. If None, the current axes is fetched with :func:`gca()`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
Raises
------
ValueError
If the `freqs` parameter is not specified while the Network in :attr:`network` is `None`.
"""
if freqs is None:
if self.network is None:
raise ValueError(
'Neither `freqs` nor `self.network` is specified. Cannot plot model response without any '
'frequency information.')
else:
freqs = self.network.f
# get system matrices of state-space representation
A, B, C, D, E = self._get_ABCDE()
n_ports = np.shape(D)[0]
# calculate and save singular values for each frequency
u, sigma, vh = np.linalg.svd(self._get_s_from_ABCDE(freqs, A, B, C, D, E))
# plot the frequency response of each singular value
for n in range(n_ports):
ax.plot(freqs, sigma[:, n], label=fr'$\sigma_{n + 1}$')
ax.set_xlabel('Frequency (Hz)')
ax.set_ylabel('Magnitude')
ax.legend(loc='best')
return ax
@axes_kwarg
def plot_convergence(self, ax: Axes = None) -> Axes:
"""
Plots the history of the model residue parameter **d_res** during the iterative pole relocation process of the
vector fitting, which should eventually converge to a fixed value. Additionally, the relative change of the
maximum singular value of the coefficient matrix **A** are plotted, which serve as a convergence indicator.
Parameters
----------
ax : :class:`matplotlib.Axes` object or None
matplotlib axes to draw on. If None, the current axes is fetched with :func:`gca()`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
"""
ax.semilogy(np.arange(len(self.delta_max_history)) + 1, self.delta_max_history, color='darkblue')
ax.set_xlabel('Iteration step')
ax.set_ylabel('Max. relative change', color='darkblue')
ax2 = ax.twinx()
ax2.plot(np.arange(len(self.d_res_history)) + 1, self.d_res_history, color='orangered')
ax2.set_ylabel('Residue', color='orangered')
return ax
@axes_kwarg
def plot_passivation(self, ax: Axes = None) -> Axes:
"""
Plots the history of the greatest singular value during the iterative passivity enforcement process, which
should eventually converge to a value slightly lower than 1.0 or stop after reaching the maximum number of
iterations specified in the class variable :attr:`max_iterations`.
Parameters
----------
ax : :class:`matplotlib.Axes` object or None
matplotlib axes to draw on. If None, the current axes is fetched with :func:`gca()`.
Returns
-------
:class:`matplotlib.Axes`
matplotlib axes used for drawing. Either the passed :attr:`ax` argument or the one fetch from the current
figure.
"""
ax.plot(np.arange(len(self.history_max_sigma)) + 1, self.history_max_sigma)
ax.set_xlabel('Iteration step')
ax.set_ylabel('Max. singular value')
return ax
def write_spice_subcircuit_s(self, file: str, fitted_model_name: str = "s_equivalent",
create_reference_pins: bool = False) -> None:
"""
Creates an equivalent N-port subcircuit based on its vector fitted scattering (S) parameter responses
in spice simulator netlist syntax (compatible with LTspice, ngspice, Xyce, ...). The circuit synthesis is based
on a direct implementation of the state-space representation of the vector fitted model [#vf-book]_.
Parameters
----------
file : str
Path and filename including file extension (usually .sp) for the subcircuit file.
fitted_model_name: str
Name of the resulting subcircuit, default "s_equivalent"
create_reference_pins: bool
If set to True, the synthesized subcircuit will have N pin-pairs:
p1 p1_ref p2 p2_ref ... pN pN_ref
If set to False, the synthesized subcircuit will have N pins
p1 p2 ... pN
In this case, the reference nodes will be internally connected
to the global ground net 0.
The default is False
Returns
-------
None
Examples
--------
Load and fit the `Network`, then export the equivalent subcircuit:
>>> nw_3port = skrf.Network('my3port.s3p')
>>> vf = skrf.VectorFitting(nw_3port)
>>> vf.auto_fit()
>>> vf.write_spice_subcircuit_s('/my3port_model.sp')
References
----------
.. [#vf-book] S. Grivet-Talocia and B. Gustavsen, "Passive Macromodeling", Wiley, 2016,
doi: https://doi.org/10.1002/9781119140931
"""
if np.any(self.proportional_coeff):
build_e = True
else:
build_e = False
with open(file, 'w') as f:
# write title line
f.write('* EQUIVALENT CIRCUIT FOR VECTOR FITTED S-MATRIX\n')
f.write('* Created using scikit-rf vectorFitting.py\n')
f.write('*\n')
# Create subcircuit pin string and reference nodes
if create_reference_pins:
str_input_nodes = " ".join(map(lambda x: f'p{x + 1} p{x + 1}_ref', range(self.network.nports)))
else:
str_input_nodes = " ".join(map(lambda x: f'p{x + 1}', range(self.network.nports)))
f.write(f'.SUBCKT {fitted_model_name} {str_input_nodes}\n')
for i in range(self.network.nports):
f.write('*\n')
f.write(f'* Port network for port {i + 1}\n')
if create_reference_pins:
node_ref_i = f'p{i + 1}_ref'
else:
node_ref_i = '0'
# reference impedance (real, i.e. resistance) of port i
z0_i = np.real(self.network.z0[0, i])
# transfer gain of the controlled current sources representing the incident power wave a_i at port i
#
# the gain values result from the definition of the incident power wave:
# a_i = 1 / 2 / sqrt(Z0_i) * (V_i + Z0_i * I_i) = 1 / 2 / sqrt(Z0_i) * V_i + sqrt(Z0_i) / 2 * I_i
gain_vccs_a_i = 1 / 2 / np.sqrt(z0_i)
gain_cccs_a_i = np.sqrt(z0_i) / 2
# transfer gain of the controlled current source representing the reflected power wave b_i at port i
#
# the gain values result from the definition of the reflected power wave:
# b_i = 1 / 2 / sqrt(Z0_i) * (V_i - Z0_i * I_i)
#
# depending on the circuit topology used for the equivalent port network, this can be implemented
# with either controlled current and/or controlled voltage sources. in case of the Norton current
# source used in this implementation, the reflected power wave relates to the source current as:
# b_i = sqrt(Z0_i) / 2 * I_b_i <==> I_b_i = 2 / sqrt(Z0_i) * b_i
gain_b_i = 2 / np.sqrt(z0_i)
# dummy voltage source (v = 0) for port current sensing (I_i)
f.write(f'V{i + 1} p{i + 1} s{i + 1} 0\n')
# adding port reference resistor Ri = Z0_i
f.write(f'R{i + 1} s{i + 1} {node_ref_i} {z0_i}\n')
# transfer of states and inputs from port j to input/output network of port i
for j in range(self.network.nports):
if create_reference_pins:
node_ref_j = f'p{j + 1}_ref'
else:
node_ref_j = '0'
# reference impedance (real, i.e. resistance) of port i
z0_j = np.real(self.network.z0[0, j])
# Stacking order in VectorFitting class variables:
# s11, s12, s13, ..., s21, s22, s23, ...
idx_S_i_j = i * self.network.nports + j
# VCCS and CCCS adding their currents to represent the incident wave a_j
gain_vccs_a_j = 1 / 2 / np.sqrt(z0_j)
gain_cccs_a_j = np.sqrt(z0_j) / 2
d = self.constant_coeff[idx_S_i_j]
e = self.proportional_coeff[idx_S_i_j]
if d != 0.0:
# avoid zero-valued coefficients (in case of fit_constant=False)
# input a_j is scaled by constant term d_i_j and by current gain for b_i
g_ij = gain_b_i * d * gain_vccs_a_j
f_ij = gain_b_i * d * gain_cccs_a_j
f.write(f'Gd{i + 1}_{j + 1} {node_ref_i} s{i + 1} p{j + 1} {node_ref_j} {g_ij}\n')
f.write(f'Fd{i + 1}_{j + 1} {node_ref_i} s{i + 1} V{j + 1} {f_ij}\n')
if build_e and e != 0.0:
# avoid zero-valued coefficients (in case of fit_proportional=False)
# proportional coefficients require an extra node for the differentiation using an inductor
# [Y(s) ~ s * E * U(s)]
# differentiated input a_j is scaled by proportional term e_i_j and by current gain for b_i
g_ij = gain_b_i * e
f.write(f'Ge{i + 1}_{j + 1} {node_ref_i} s{i + 1} e{j + 1} 0 {g_ij}\n')
# each residue rk_i_j at port i is multiplied by its respective state signal xk_j
for k in range(len(self.poles)):
pole = self.poles[k]
residue = self.residues[idx_S_i_j, k]
g_re = gain_b_i * np.real(residue)
g_im = gain_b_i * np.imag(residue)
if np.imag(pole) == 0.0:
# Real pole/residue pair; represented by one state
xkj = f'x{k + 1}_a{j + 1}'
f.write(f'Gr{k + 1}_{i + 1}_{j + 1} {node_ref_i} s{i + 1} {xkj} 0 {g_re}\n')
else:
# Complex-conjugate pole/residue pair; represented by two states
# real part at x_{k + 1}_re_{j + 1}
# imaginary part at x_{k + 1}_im_{j + 1}
xk_re_j = f'x{k + 1}_re_a{j + 1}'
xk_im_j = f'x{k + 1}_im_a{j + 1}'
f.write(f'Gr{k + 1}_re_{i + 1}_{j + 1} {node_ref_i} s{i + 1} {xk_re_j} 0 {g_re}\n')
f.write(f'Gr{k + 1}_im_{i + 1}_{j + 1} {node_ref_i} s{i + 1} {xk_im_j} 0 {g_im}\n')
# create state networks driven by this port i (input variable u = a_i)
f.write('*\n')
f.write(f'* State networks driven by port {i + 1}\n')
for k in range(len(self.poles)):
pole = self.poles[k]
pole_re = np.real(pole)
pole_im = np.imag(pole)
# Transfer of input (a_i) to state networks (node xk_i) using VCCS and CCCS
if pole_im == 0.0:
# Real pole; represented by one state, input a_i is scaled by b = 1
xki = f'x{k + 1}_a{i + 1}'
f.write(f'Cx{k + 1}_a{i + 1} {xki} 0 1.0\n') # 1F capacitor makes math easy
f.write(f'Gx{k + 1}_a{i + 1} 0 {xki} p{i + 1} {node_ref_i} {1 * gain_vccs_a_i}\n')
f.write(f'Fx{k + 1}_a{i + 1} 0 {xki} V{i + 1} {1 * gain_cccs_a_i}\n')
f.write(f'Rp{k + 1}_a{i + 1} 0 {xki} {-1 / pole_re}\n')
else:
# Complex pole of a conjugate pair; represented by two states
# real part at x_{k + 1}_re_{i + 1}, input a_i is scaled by b = 2
xk_re_i = f'x{k + 1}_re_a{i + 1}'
xk_im_i = f'x{k + 1}_im_a{i + 1}'
f.write(f'Cx{k + 1}_re_a{i + 1} {xk_re_i} 0 1.0\n') # 1F capacitor makes math easy
f.write(
f'Gx{k + 1}_re_a{i + 1} 0 {xk_re_i} p{i + 1} {node_ref_i} {2 * gain_vccs_a_i}\n')
f.write(f'Fx{k + 1}_re_a{i + 1} 0 {xk_re_i} V{i + 1} {2 * gain_cccs_a_i}\n')
f.write(f'Rp{k + 1}_re_re_a{i + 1} 0 {xk_re_i} {-1 / pole_re}\n')
f.write(f'Gp{k + 1}_re_im_a{i + 1} 0 {xk_re_i} {xk_im_i} 0 {pole_im}\n')
# imaginary part at x_{k + 1}_im_{i + 1}, input a_i is inactive (b = 0)
f.write(f'Cx{k + 1}_im_a{i + 1} {xk_im_i} 0 1.0\n') # 1F capacitor makes math easy
f.write(f'Gp{k + 1}_im_re_a{i + 1} 0 {xk_im_i} {xk_re_i} 0 {-1 * pole_im}\n')
f.write(f'Rp{k + 1}_im_im_a{i + 1} 0 {xk_im_i} {-1 / pole_re}\n')
# create differentiation network for this port i (input variable u = a_i)
if build_e:
f.write('*\n')
f.write(f'* Network with derivative of input a_{i + 1} for proportional term\n')
# voltage on node 'e{i + 1}' to gnd (0) represents time-derivative of input a_i for terms e_j_i
f.write(f'Le{i + 1} e{i + 1} 0 1.0\n') # 1H inductor makes math easy
f.write(f'Ge{i + 1} 0 e{i + 1} p{i + 1} {node_ref_i} {gain_vccs_a_i}\n')
f.write(f'Fe{i + 1} 0 e{i + 1} V{i + 1} {gain_cccs_a_i}\n')
f.write(f'.ENDS {fitted_model_name}\n')
|