| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 
 |       subroutine comqr3(nm,n,low,igh,hr,hi,wr,wi,zr,zi,ierr,job)
c
      integer i,j,l,n,en,ll,nm,igh,ip1,
     x        itn,its,low,lp1,enm1,iend,ierr
      double precision hr(nm,n),hi(nm,n),wr(n),wi(n),zr(nm,n),zi(nm,n)
      double precision si,sr,ti,tr,xi,xr,yi,yr,zzi,zzr,norm
      double precision pythag
c
c!originator
c     this subroutine is a translation of a unitary analogue of the
c     algol procedure  comlr2, num. math. 16, 181-204(1970) by peters
c     and wilkinson.
c     handbook for auto. comp., vol.ii-linear algebra, 372-395(1971).
c     the unitary analogue substitutes the qr algorithm of francis
c     (comp. jour. 4, 332-345(1962)) for the lr algorithm.
c
c     modified by  c. moler
c!purpose
c     this subroutine finds the eigenvalues of a complex upper 
c     hessenberg matrix by the qr method. The unitary transformation
c     can also be accumulated if  corth  has been used to reduce
c     this general matrix to hessenberg form.
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c     MODIFICATION OF EISPACK COMQR+COMQR2 
c        1. job parameter added 
c        2. code concerning eigenvector computation deleted
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c!calling sequence
c      subroutine comqr3(nm,n,low,igh,hr,hi,wr,wi,zr,zi,ierr
c     *                 ,job)
c
c     on input.
c
c        nm must be set to the row dimension of two-dimensional
c          array parameters as declared in the calling program
c          dimension statement.
c
c        n is the order of the matrix.
c
c        low and igh are integers determined by the balancing
c          subroutine  cbal.  if  cbal  has not been used,
c          set low=1, igh=n.
c
c        hr and hi contain the real and imaginary parts,
c          respectively, of the complex upper hessenberg matrix.
c          their lower triangles below the subdiagonal contain further
c          information about the transformations which were used in the
c          reduction by  corth, if performed.  
c
c        zr and zi contain the real and imaginary parts,respectively
c           of the unitary similarity used to put h on hessenberg form
c           or a unitary matrix ,if vectors are desired
c
c       job indicate the job to be performed: job=xy
c           if y=0 no accumulation of the unitary transformation
c           if y=1 transformation  accumulated in z
c
c     on output.
c     the upper hessenberg portions of hr and hi have been destroyed
c
c
c        wr and wi contain the real and imaginary parts,
c          respectively, of the eigenvalues.  if an error
c          exit is made, the eigenvalues should be correct
c          for indices ierr+1,...,n.
c
c        zr and zi contain the real and imaginary parts,
c          respectively, of the eigenvectors.  the eigenvectors
c          are unnormalized.  if an error exit is made, none of
c          the eigenvectors has been found.
c
c        ierr is set to
c          zero       for normal return,
c          j          if the j-th eigenvalue has not been
c                     determined after a total of 30*n iterations.
c
c     questions and comments should be directed to b. s. garbow,
c     applied mathematics division, argonne national laboratory
c
c!auxiliary routines
c     pythag
c!
c     ------------------------------------------------------------------
c
      ierr = 0
c*****
      jx=job/10
      jy=job-10*jx
c
c     .......... create real subdiagonal elements ..........
      iend=igh-low-1
      if(iend.lt.0) goto 180
  150 l = low + 1
c
      do 170 i = l, igh
         ll = min(i+1,igh)
         if (hi(i,i-1) .eq. 0.0d+0) go to 170
         norm = pythag(hr(i,i-1),hi(i,i-1))
         yr = hr(i,i-1)/norm
         yi = hi(i,i-1)/norm
         hr(i,i-1) = norm
         hi(i,i-1) = 0.0d+0
c
         do 155 j = i, n
            si = yr*hi(i,j) - yi*hr(i,j)
            hr(i,j) = yr*hr(i,j) + yi*hi(i,j)
            hi(i,j) = si
  155    continue
c
         do 160 j = 1, ll
            si = yr*hi(j,i) + yi*hr(j,i)
            hr(j,i) = yr*hr(j,i) - yi*hi(j,i)
            hi(j,i) = si
  160    continue
c*****
         if (jy .eq. 0) go to 170
c*****
         do 165 j = low, igh
            si = yr*zi(j,i) + yi*zr(j,i)
            zr(j,i) = yr*zr(j,i) - yi*zi(j,i)
            zi(j,i) = si
  165    continue
c
  170 continue
c     .......... store roots isolated by cbal ..........
c
  180 do 200 i = 1, n
         if (i .ge. low .and. i .le. igh) go to 200
         wr(i) = hr(i,i)
         wi(i) = hi(i,i)
  200 continue
c
  210 continue
      en = igh
      tr = 0.0d+0
      ti = 0.0d+0
      itn = 30*n
c     .......... search for next eigenvalue ..........
  220 if (en .lt. low) go to 1001
      its = 0
      enm1 = en - 1
c     .......... look for single small sub-diagonal element
c                for l=en step -1 until low do -- ..........
  240 do 260 ll = low, en
         l = en + low - ll
         if (l .eq. low) go to 300
c*****
         xr = abs(hr(l-1,l-1)) + abs(hi(l-1,l-1)
     x             + abs(hr(l,l)) +abs(hi(l,l)))
         yr = xr + abs(hr(l,l-1))
         if (xr .eq. yr) go to 300
c*****
  260 continue
c     .......... form shift ..........
  300 if (l .eq. en) go to 660
      if (itn .eq. 0) go to 1000
      if (its .eq. 10 .or. its .eq. 20) go to 320
      sr = hr(en,en)
      si = hi(en,en)
      xr = hr(enm1,en)*hr(en,enm1)
      xi = hi(enm1,en)*hr(en,enm1)
      if (xr .eq. 0.0d+0 .and. xi .eq. 0.0d+0) go to 340
      yr = (hr(enm1,enm1) - sr)/2.0d+0
      yi = (hi(enm1,enm1) - si)/2.0d+0
      call wsqrt(yr**2-yi**2+xr,2.0d+0*yr*yi+xi,zzr,zzi)
      if (yr*zzr + yi*zzi .ge. 0.0d+0) go to 310
      zzr = -zzr
      zzi = -zzi
  310 call cdiv(xr,xi,yr+zzr,yi+zzi,zzr,zzi)
      sr = sr - zzr
      si = si - zzi
      go to 340
c     .......... form exceptional shift ..........
  320 sr = abs(hr(en,enm1)) + abs(hr(enm1,en-2))
      si = 0.0d+0
c
  340 do 360 i = low, en
         hr(i,i) = hr(i,i) - sr
         hi(i,i) = hi(i,i) - si
  360 continue
c
      tr = tr + sr
      ti = ti + si
      its = its + 1
      itn = itn - 1
c     .......... reduce to triangle (rows) ..........
      lp1 = l + 1
c
      do 500 i = lp1, en
         sr = hr(i,i-1)
         hr(i,i-1) = 0.0d+0
         norm = pythag(pythag(hr(i-1,i-1),hi(i-1,i-1)),sr)
         xr = hr(i-1,i-1)/norm
         wr(i-1) = xr
         xi = hi(i-1,i-1)/norm
         wi(i-1) = xi
         hr(i-1,i-1) = norm
         hi(i-1,i-1) = 0.0d+0
         hi(i,i-1) = sr/norm
c
         do 490 j = i, n
            yr = hr(i-1,j)
            yi = hi(i-1,j)
            zzr = hr(i,j)
            zzi = hi(i,j)
            hr(i-1,j) = xr*yr + xi*yi + hi(i,i-1)*zzr
            hi(i-1,j) = xr*yi - xi*yr + hi(i,i-1)*zzi
            hr(i,j) = xr*zzr - xi*zzi - hi(i,i-1)*yr
            hi(i,j) = xr*zzi + xi*zzr - hi(i,i-1)*yi
  490    continue
c
  500 continue
c
      si = hi(en,en)
      if (si .eq. 0.0d+0) go to 540
      norm = pythag(hr(en,en),si)
      sr = hr(en,en)/norm
      si = si/norm
      hr(en,en) = norm
      hi(en,en) = 0.0d+0
      if (en .eq. n) go to 540
      ip1 = en + 1
c
      do 520 j = ip1, n
         yr = hr(en,j)
         yi = hi(en,j)
         hr(en,j) = sr*yr + si*yi
         hi(en,j) = sr*yi - si*yr
  520 continue
c     .......... inverse operation (columns) ..........
  540 do 600 j = lp1, en
         xr = wr(j-1)
         xi = wi(j-1)
c
         do 580 i = 1, j
            yr = hr(i,j-1)
            yi = 0.0d+0
            zzr = hr(i,j)
            zzi = hi(i,j)
            if (i .eq. j) go to 560
            yi = hi(i,j-1)
            hi(i,j-1) = xr*yi + xi*yr + hi(j,j-1)*zzi
  560       hr(i,j-1) = xr*yr - xi*yi + hi(j,j-1)*zzr
            hr(i,j) = xr*zzr + xi*zzi - hi(j,j-1)*yr
            hi(i,j) = xr*zzi - xi*zzr - hi(j,j-1)*yi
  580    continue
c*****
         if (jy .eq. 0) go to 600
c*****
         do 590 i = low, igh
            yr = zr(i,j-1)
            yi = zi(i,j-1)
            zzr = zr(i,j)
            zzi = zi(i,j)
            zr(i,j-1) = xr*yr - xi*yi + hi(j,j-1)*zzr
            zi(i,j-1) = xr*yi + xi*yr + hi(j,j-1)*zzi
            zr(i,j) = xr*zzr + xi*zzi - hi(j,j-1)*yr
            zi(i,j) = xr*zzi - xi*zzr - hi(j,j-1)*yi
  590    continue
c
  600 continue
c
      if (si .eq. 0.0d+0) go to 240
c
      do 630 i = 1, en
         yr = hr(i,en)
         yi = hi(i,en)
         hr(i,en) = sr*yr - si*yi
         hi(i,en) = sr*yi + si*yr
  630 continue
c*****
      if (jy .eq. 0) go to 240
c*****
      do 640 i = low, igh
         yr = zr(i,en)
         yi = zi(i,en)
         zr(i,en) = sr*yr - si*yi
         zi(i,en) = sr*yi + si*yr
  640 continue
c
      go to 240
c     .......... a root found ..........
  660 hr(en,en) = hr(en,en) + tr
      wr(en) = hr(en,en)
      hi(en,en) = hi(en,en) + ti
      wi(en) = hi(en,en)
      en = enm1
      go to 220
c     .......... all roots found.  ..........
c      go to 1001
c
c     .......... set error -- no convergence to an
c                eigenvalue after 30 iterations ..........
 1000 ierr = en
 1001 return
      end
 |