1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
subroutine foptim (indsim,n,x,f,g,izs,rzs,dzs)
c!
c interface for use with optim
c!
include '../stack.h'
integer indsim,n,izs(*)
double precision dzs(*),g(*),x(*),f
real rzs(*)
c
integer it1
c
character*80 name,nam1
common /optim/ name
c
call majmin(80,name,nam1)
c
c INSERT CALL TO YOUR OWN ROUTINE HERE
c The routine genros is an example: it is called when the
c string 'rosen' is given as a parameter
c in the calling sequence of scilab's optim built-in
c function
c+
if (nam1.eq.'genros') then
c Rosenbrock test (n>=3)
call genros(indsim,n,x,f,g,izs,rzs,dzs)
return
elseif (nam1.eq.'topt2') then
c two level optimization
call topt2(indsim,n,x,f,g,izs,rzs,dzs)
return
elseif (nam1.eq.'icsemc') then
c ICSE
call icsemc(indsim,n,x,f,g,izs,rzs,dzs)
return
endif
c+
c dynamic link
call tlink(name,0,it1)
if(it1.le.0) goto 2000
call dyncall(it1-1,indsim,n,x,f,g,izs,rzs,dzs)
cc fin
return
c
2000 indsim=0
buf=name
call error(50)
return
end
subroutine genros(ind,n,x,f,g,izs,rzs,dzs)
c Example of cost function given by a subroutine
c if n<=2 returns ind=0
c f.bonnans, oct 86
implicit double precision (a-h,o-z)
real rzs(1)
double precision dzs(*)
dimension x(n),g(n),izs(*)
common/nird/nizs,nrzs,ndzs
if (n.lt.3) then
ind=0
return
endif
if(ind.eq.10) then
nizs=2
nrzs=1
ndzs=2
return
endif
if(ind.eq.11) then
izs(1)=5
izs(2)=10
dzs(2)=100.0d+0
return
endif
if(ind.eq.2)go to 5
if(ind.eq.3)go to 20
if(ind.eq.4)go to 5
ind=-1
return
5 f=1.0d+0
do 10 i=2,n
im1=i-1
10 f=f + dzs(2)*(x(i)-x(im1)**2)**2 + (1.0d+0-x(i))**2
if(ind.eq.2)return
20 g(1)=-4.0d+0*dzs(2)*(x(2)-x(1)**2)*x(1)
nm1=n-1
do 30 i=2,nm1
im1=i-1
ip1=i+1
g(i)=2.0d+0*dzs(2)*(x(i)-x(im1)**2)
30 g(i)=g(i) -4.0d+0*dzs(2)*(x(ip1)-x(i)**2)*x(i) -
& 2.0d+0*(1.0d+0-x(i))
g(n)=2.0d+0*dzs(2)*(x(n)-x(nm1)**2) - 2.0d+0*(1.0d+0-x(n))
return
end
subroutine topt2(i,n,x,f,g,izs,rzs,dzs)
c 2 levels optimization test
implicit double precision (a-h,o-z)
dimension x(2),g(2),dzs(1)
i=1
f=(x(1)-dzs(1))**2 + 10* x(2)**2
g(1)=2*(x(1)-dzs(1))
g(2)=20*x(2)
end
subroutine icsemc(ind,nu,u,co,g,itv,rtv,dtv)
external mcsec,icsec2,icsei
c least square of LQ problems
call icse(ind,nu,u,co,g,itv,rtv,dtv,mcsec,icsec2,icsei)
end
subroutine mcsec(indf,t,y,uc,uv,f,fy,fu,b,itu,dtu,
& t0,tf,dti,dtf,ermx,iu,nuc,nuv,ilin,nti,ntf,ny,nea,
& itmx,nex,nob,ntob,ntobi,nitu,ndtu)
c
c RHS of state equation
c input parameters:
c indf : 1,2,3 repectively if f,fy,fu is to be calculated
c t : current time
c y(ny) : state vector
c uc(nuc) : time independent control
c uv(nuv) : time dependent control
c b(ny) : constant term in the LQ case
c output parameters :
c indf : >0 if computation is correct,<=0 if not
c f(ny) : rhs
c fy(ny,ny): jacobian of f wrt y
c fu(ny,nuc+nuv) : derivative of f wrt u
c Working arrays (for the user) :
c itu(nitu): integer array
c dtu(ndtu): double precision array
c (nitu and ndtu are initialized in common icsez).
c!
implicit double precision (a-h,o-z)
dimension y(ny),uc(*),uv(*),f(ny),fy(ny,ny),fu(ny,*),
& b(ny),itu(*),dtu(*),iu(5)
c
if (indf.eq.1) then
do 50 i=1,ny
fii=b(i)
do 20 j=1,ny
fii=fii+fy(i,j)*y(j)
20 continue
if(nuc.gt.0) then
do 30 j=1,nuc
fii=fii+fu(i,j)*uc(j)
30 continue
endif
if(nuv.gt.0) then
jj=0
do 40 j=1+nuc,nuv+nuc
jj=jj+1
fii=fii+fu(i,j)*uv(jj)
40 continue
endif
f(i)=fii
50 continue
return
endif
end
|