File: car.sci

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (604 lines) | stat: -rw-r--r-- 16,617 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
function []=mvcr(x,y,theta,phi)
///////////////%% BEGIN OF SCRIPT-FILE mvcr %%%%%%%%%%%%%%%
//
//  CAR PACKING VIA FLATNESS AND FRENET FORMULAS
//
//    explicit computation and visualisation of the motions.
//
//    February 1993
//
// ............................................................
// :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
// :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
// :..........................................................:
//
//
// bigL:  car length (m) 
// bigT: basic time interval for one  smooth motion (s)
// a0, a1, p(3): intermediate variables for polynomial 
//           curves definition
//
//
// Copyright INRIA
xbasc() ;
bigT = 1 ; bigL = 1 ;
a0 =0 ; a1 = 0 ;
p= [0 0 0 ] ;
//
// initial configuration of the car
x1 = x ; y1 = y ; theta1 = theta ; phi1 = phi ;
// final configuration of the car 
x2 = 0 ; y2 = 0  ; theta2 =0; phi2 = 0 ;
// Constraints: y1 > y2 and -%pi/2 < theta1,2, phi1,2 < %pi/2
//
//  sampling of motion 1 --> 0 and 0 --> 2 
     nbpt = 40 ;
// computation of  intermediate configuration 
x0 = maxi(x1,x2)   ....
    + bigL*abs(tan(theta1)) .....
    + bigL*abs(tan(theta2)) .....
    + bigL*(abs(y1-y2)/bigL)^(1/2) ;
y0 = (y1+y2)/2 ;
//
//
// first polynomial curve
a0 = x0 ; b0 = y0 ;
a1 = x1 ; b1 = y1 ; 
M = [ 
  (a1-a0)^3     (a1-a0)^4     (a1-a0)^5 
3*(a1-a0)^2   4*(a1-a0)^3   5*(a1-a0)^4
6*(a1-a0)    12*(a1-a0)^2  20*(a1-a0)^3 
      ] ;
q = [ 
   b1-b0 
   tan(theta1) 
   tan(phi1)/(bigL*(cos(theta1)^3)) 
    ] ;
p = inv(M)*q ;
//
// computation the first motion, time: 1 -> 0
 state=[ x1 y1 theta1 phi1 ] ;
 for i=1:(nbpt+1)
    tau = (i-1)/nbpt ;
    phi=tau*tau*(3-2*tau) ;
    a = (1-phi)*a1 + phi*a0 ;
    f=  b0+ p(1).*(a-a0)^3 +    p(2).*(a-a0)^4 +    p(3).*(a-a0)^5 ;
   df  = 3*p(1).*(a-a0)^2 +  4*p(2).*(a-a0)^3 +  5*p(3).*(a-a0)^4 ;
   ddf = 6*p(1).*(a-a0)   + 12*p(2).*(a-a0)^2 + 20*p(3).*(a-a0)^3 ;
   k = ddf / ((1+df*df)^(3/2)) ;
   state = [ state; a   f  atan(df) atan(k*bigL)] ; 
 end  
//
//
// second polynomial curve
a0 = x0 ; b0 = y0 ;
a1 = x2 ; b1 = y2 ; 
M = [ 
  (a1-a0)^3     (a1-a0)^4     (a1-a0)^5 
3*(a1-a0)^2   4*(a1-a0)^3   5*(a1-a0)^4
6*(a1-a0)    12*(a1-a0)^2  20*(a1-a0)^3 
      ] ;
q = [ 
      b1-b0 
   tan(theta2) 
   tan(phi2)/(bigL*(cos(theta2)^3)) 
    ] ;
p = inv(M)*q ;
//
// computation of the second motion 0 --> 2
 for i=1:(nbpt+1)
   tau = (i-1)/nbpt ;
   phi=tau*tau*(3-2*tau) ;
   a = (1-phi)*a0 + phi*a1 ;
   f=  b0+ p(1).*(a-a0)^3 +    p(2).*(a-a0)^4 +    p(3).*(a-a0)^5 ;
   df  = 3*p(1).*(a-a0)^2 +  4*p(2).*(a-a0)^3 +  5*p(3).*(a-a0)^4 ;
   ddf = 6*p(1).*(a-a0)   + 12*p(2).*(a-a0)^2 + 20*p(3).*(a-a0)^3 ;
   k = ddf / ((1+df*df)^(3/2)) ;
   state = [ state; a   f  atan(df) atan(k*bigL)] ;
 end  
//
//
// Graphics 
//
// window size
xmini = mini(state(:,1))-0.5*bigL ;
xmaxi = maxi(state(:,1))+1.5*bigL ;
ymini = mini(state(:,2))-1.5*bigL ;
ymaxi = maxi(state(:,2))+1.5*bigL ;

//xsetech([0,0,1,1],[xmini,ymini,xmaxi,ymaxi]);
pixb=xget("pixmap");xset("pixmap",1);xset("wwpc");
isoview(xmini,xmaxi,ymini,ymaxi)
rect=[xmini ymini xmaxi ymaxi]
xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
// starting configuration
ptcr([x1,y1,theta1,phi1]) ;
// end configuration
ptcr([x2,y2,theta2,phi2]) ;
// intermediate configuration (inversion of velocity)
ptcr([x0,y0,0,0]) ;
// trajectory of the linearizing output
xpoly(state(:,1),state(:,2),'lines') ;
if xget('pixmap')==1 then xset("wshow");end
// movies 
[n m] = size(state) ;
if driver()<>'Pos' then
  if xget('pixmap')==0 then
    xset('alufunction',6);...
	for i=1:n,
      ptcr( state(i,:)) ; ptcr( state(i,:)) ;
    end ;
    xset('alufunction',3);
  else
    xset('alufunction',6);
    for i=1:n,
      ptcr( state(i,:)) ; 
      xset("wshow");
      ptcr( state(i,:))
    end ;  
    xset('alufunction',3)
    ptcr( state(n,:)) ; 
    xset("wshow");
  end
else //used for gif animation generation
  for i=1:2:n,
    xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
    ptcr([x1,y1,theta1,phi1]) ;
    ptcr([x2,y2,theta2,phi2]) ;
    ptcr([x0,y0,0,0]) 
    xpoly(state(:,1),state(:,2),'lines') ;
    ptcr( state(i,:)) ; 
    xset("wshow");
  end ;  
end
xset("pixmap",pixb)


function []=mvcr2T(x,y,theta1,theta2,theta3,phi)
xbasc();
//
//  CAR WITH 2 TRAILERS PACKING VIA FLATNESS AND FRENET FORMULAS
//
//   explicit computation and visualisation of the motions.
//
//    February 1993
//
// ............................................................
// :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
// :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
// :..........................................................:
//
// lengths 
//    bigL:  car length (m) 
//   d1: trailer 1 length (m)
//   d2: trailer 2 length (m)
// bigT: basic time interval for one  smooth motion (s)
// a0, a1, b0, p(5): intermediate variables for polynomial 
//           curves definition
//
bigT = 1 ; 
bigL = 1 ; d1 = 1.5 ; d2 = 1 ; 
a0 =0 ; a1 = 0 ; b0 = 0 ;
p= [0 0 0 0 0 ] ;
//
// initial configuration
//   the system is described via the coordinates of last trailer
//    
x2_1 = x ; y2_1 = y ; 
theta2_1= theta1; theta12_1 = theta2 ; theta01_1= theta3 ;
phi_1 = phi ;
//
// final configuration of the car 
x2_2 = 0 ; y2_2 = 0  ;
theta2_2= 0 ; theta12_2 = 0 ; theta01_2= 0 ;
                                   phi_2 = 0 ;
//
// sampling of motion 1 --> 0 and of motion 0 --> 2
        nbpt1 = 40 ; nbpt2 = 40 ;
//
// Constraints: y2_1 > y2_2 and 
// the 4 angles  theta2_1,2
//               theta12_1,2
//               theta01_1,2
//               phi_1,2 
//   must belong to  ] -%pi/2 , + %pi/2 [
//               
//
// conputation of  intermediate configuration
LL=bigL+d1+d2
x2_0 = maxi(x2_1,x2_2) ....
      + LL*abs(tan(theta2_1)) ....
      + LL*abs(tan(theta12_1)) .... 
      + LL*abs(tan(theta01_1)) .... 
      + LL*( abs(y2_1-y2_2)/(d1+d2+bigL) )^(1/2) ;
y2_0 = (y2_1+y2_2)/2 ;
//
//
// first polynomial curve
a0 = x2_0 ; b0 = y2_0 ;
a1 = x2_1 ; b1 = y2_1 ; 
p=cr2Tkf((b1-b0),theta2_1,theta12_1,theta01_1,phi_1) ;
//
// computation the first motion  1 -> 0
 theta2 = theta2_1 ;
 theta1 = theta12_1+theta2 ;
 theta0 = theta01_1+theta1 ;
 phi = phi_1 ;
 x0=x2_1+d2*cos(theta2)+d1*cos(theta1) ;
 y0=y2_1+d2*sin(theta2)+d1*sin(theta1) ;
 state_1 = [x0 y0 theta0 theta1 theta2 phi] ;
 for i=1:(nbpt1+1)
   tau = (i-1)/nbpt1 ;
   phi=tau*tau*(3-2*tau) ;
   aa = (1-phi)*a1 + phi*a0 ;
   [bb df d2f d3f d4f d5f] = cr2Tfjt(aa) ;
   [k2 k1 k0 dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f) ;
   theta2 = atan(df);
   theta1 = atan(k2*d2)+theta2;
   theta0 = atan(k1*d1) + theta1 ;
   phi = atan(k0*bigL) ;
   x0=aa+d2*cos(theta2)+d1*cos(theta1) ;
   y0=bb+d2*sin(theta2)+d1*sin(theta1) ;
   state_1 = [ state_1 ; x0 y0 theta0 theta1 theta2 phi] ;
 end ;
//
// second polynomial curve
a0 = x2_0 ; b0 = y2_0 ;
a1 = x2_2 ; b1 = y2_2 ; 
 p=cr2Tkf((b1-b0),theta2_2,theta12_2,theta01_2,phi_2) ;
//
// computation of the second motion  0 -> 2
 theta2 = 0 ;
 theta1 = 0 ;
 theta0 = 0 ;
 phi = 0 ;
 x0=x2_0+d2*cos(theta2)+d1*cos(theta1) ;
 y0=y2_0+d2*sin(theta2)+d1*sin(theta1) ;
 state_2 = [x0 y0 theta0 theta1 theta2 phi] ;
 for i=1:(nbpt2+1)
   tau = (i-1)/nbpt2 ;
   phi=tau*tau*(3-2*tau) ;
   aa = (1-phi)*a0 + phi*a1 ;
   [bb df d2f d3f d4f d5f] = cr2Tfjt(aa) ;
   [k2 k1 k0 dk0]=cr2Tfk(df,d2f,d3f,d4f,d5f) ;
   theta2 = atan(df);
   theta1 = atan(k2*d2)+theta2;
   theta0 = atan(k1*d1) + theta1 ;
   phi = atan(k0*bigL) ;
   x0=aa+d2*cos(theta2)+d1*cos(theta1) ;
   y0=bb+d2*sin(theta2)+d1*sin(theta1) ;
   state_2 = [ state_2 ; x0 y0 theta0 theta1 theta2 phi] ;
 end ;
//
// Graphics 
//
// window size
xmini = mini([mini(state_1(:,1)) mini(state_2(:,1))]) -1.5*(d1+d2)  ;
xmaxi = maxi([maxi(state_1(:,1)) maxi(state_1(:,1))]) +1.5*bigL ;
ymini = mini([mini(state_1(:,2)) mini(state_2(:,2))])-bigL;
ymaxi = maxi([maxi(state_1(:,2)) maxi(state_1(:,2))])+bigL;
rect=[xmini ymini xmaxi ymaxi]
pixb=xget("pixmap");xset("pixmap",1);xset("wwpc");
xsetech([0,0,1,1],rect);
isoview(xmini,xmaxi,ymini,ymaxi)
xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
//

xy_T1 = [ [-bigL/3  bigL/3   bigL/3  -bigL/3  -bigL/3  
-bigL/3 -bigL/3 bigL/3  bigL/3  -bigL/3 ], .....
 [ bigL/3  d1;
  0     0], .....
 [-bigL/8   bigL/8 
 bigL/6  bigL/6 
 ], .... 
 [-bigL/8   bigL/8 
-bigL/6 -bigL/6  ] ] ;

xy_T2 = [[-bigL/3  bigL/3   bigL/3  -bigL/3  -bigL/3  
-bigL/3 -bigL/3 bigL/3  bigL/3  -bigL/3 ],...
 [bigL/3  d2
  0         0 ],[ -bigL/8   bigL/8 
 bigL/6  bigL/6 
 ],[ -bigL/8   bigL/8 
-bigL/6 -bigL/6 ] ] ;

// starting configuration
   x2=x2_1 ; y2=y2_1 ;
   theta2 = theta2_1 ;
   theta1 = theta12_1+theta2 ;
   theta0 = theta01_1+theta1 ;
   phi = phi_1 ;
   x1=x2+d2*cos(theta2) ;
   y1=y2+d2*sin(theta2) ;
   x0=x1+d1*cos(theta1) ;
   y0=y1+d1*sin(theta1) ;
   ptsts=[x0,y0,theta0,theta1,theta2,phi] ;
ptcr2T(ptsts) ;
// end configuration
   x2=x2_2 ; y2=y2_2 ;
   theta2 = theta2_2 ;
   theta1 = theta12_2+theta2 ;
   theta0 = theta01_2+theta1 ;
   phi = phi_2 ;
   x1=x2+d2*cos(theta2) ;
   y1=y2+d2*sin(theta2) ;
   x0=x1+d1*cos(theta1) ;
   y0=y1+d1*sin(theta1) ;
   ptste=[x0,y0,theta0,theta1,theta2,phi] 
ptcr2T(ptste) ;
// intermediate configuration (inversion of velocity)
   x2=x2_0 ; y2=y2_0 ;
   theta2 = 0 ;
   theta1 = 0;
   theta0 = 0 ;
   phi = 0;
   x1=x2+d2*cos(theta2) ;
   y1=y2+d2*sin(theta2) ;
   x0=x1+d1*cos(theta1) ;
   y0=y1+d1*sin(theta1) ;
   ptsti=[x0,y0,theta0,theta1,theta2,phi]    
ptcr2T(ptsti) ;
state_1 =[state_1;state_2] ;
x_lin = state_1(:,1)-d1*cos(state_1(:,4))-d2*cos(state_1(:,5)) ;
y_lin = state_1(:,2)-d1*sin(state_1(:,4))-d2*sin(state_1(:,5)) ;
//  motion
//
// trajectory of the linearizing output
xpoly(x_lin,y_lin,'lines')
if xget('pixmap')==1 then xset("wshow");end

// movies 
[n,m] = size(state_1) ;
if driver()<>'Pos' then
  if xget('pixmap')==0 then
    xset('alufunction',6);
    for j=1:n
      ptcr2T(state_1(j,:));ptcr2T(state_1(j,:));
    end ;
    xset('alufunction',3);
  else
    xset('alufunction',6);
    for j=1:n
      ptcr2T(state_1(j,:));
      xset("wshow");
      ptcr2T(state_1(j,:));
    end 
    xset('alufunction',3);
    ptcr2T(state_1(n,:));
    xset("wshow");
  end
else //only use for gif animation generation
  for j=1:4:n
    xpoly(rect([1 3 3 1]),rect([2,2,4,4]),'lines',1)
    ptcr2T(ptsts) ;
    ptcr2T(ptsti) ;
    ptcr2T(ptste) ;
    xpoly(x_lin,y_lin,'lines')
    ptcr2T(state_1(j,:))
    xset("wshow");
  end 
end

xset("pixmap",pixb)
////%%%%%%%%%%%% END OF SCRIPT-FILE mvcr2T %%%%%%%%%%%%%

function []=dbcr()
//
//  CAR PACKING VIA FLATNESS AND FRENET FORMULAS
//
//   debugg and verification via integration 
//        of the non holonomic system
//
//                   February 1993
//
// ............................................................
// :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
// :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
// :..........................................................:
//
//
// bigL:  car length (m) 
// bigT: basic time interval for one  smooth motion (s)
// a0, a1, p(3): intermediate variables for polynomial 
//           curves definition
//
//
bigT = 1 ; bigL = 1 ;
a0 =0 ; a1 = 0 ;
p= [0 0 0 ] ;
//
// initial configuration of the car
x1 = 0 ; y1 = 4 ; theta1 = %pi/2.5 ; phi1 = 0 ;
// final configuration of the car 
x2 = 0 ; y2 = 0  ; theta2 =0; phi2 = 0 ;
// Constraints: y1 > y2 and -%pi/2 < theta1,2, phi1,2 < %pi/2
//
// conputation of  intermediate configuration 
x0 = maxi(x1,x2)   ....
    + bigL*abs(tan(theta1)) .....
    + bigL*abs(tan(theta2)) .....
    + bigL*(abs(y1-y2)/bigL)^(1/2) ;
y0 = (y1+y2)/2 ;
//
//
// first polynomial curve
a0 = x0 ; b0 = y0 ;
a1 = x1 ; b1 = y1 ; 
M = [ 
  (a1-a0)^3     (a1-a0)^4     (a1-a0)^5 
3*(a1-a0)^2   4*(a1-a0)^3   5*(a1-a0)^4
6*(a1-a0)    12*(a1-a0)^2  20*(a1-a0)^3 
      ] ;
q = [ 
   b1-b0 
   tan(theta1) 
   tan(phi1)/(bigL*(cos(theta1)^3)) 
    ] ;
p = inv(M)*q ;
//
// simulation of the first motion, time: 0 -> bigT
 [t_1,state_1]=ode23('car',0,bigT, [ x1 y1 theta1 phi1 ]);
//
//
// second polynomial curve
a0 = x0 ; b0 = y0 ;
a1 = x2 ; b1 = y2 ; 
M = [ 
  (a1-a0)^3     (a1-a0)^4     (a1-a0)^5 
3*(a1-a0)^2   4*(a1-a0)^3   5*(a1-a0)^4
6*(a1-a0)    12*(a1-a0)^2  20*(a1-a0)^3 
      ] ;
q = [ 
      b1-b0 
   tan(theta2) 
   tan(phi2)/(bigL*(cos(theta2)^3)) 
    ] ;
p = inv(M)*q ;
//
// simulation of the second motion, time: bigT -> 2bigT
 [n m]=size(t_1);
 [t_2,state_2]=ode23('car',bigT,2*bigT, state_1(n,:) );
//
//
// result array merging
 t_1=t_1(2:n) ; state_1=state_1(2:n,:);
 t=[
    t_1 
    t_2
    ]; 
state = [
         state_1 
         state_2 
        ];
//
//
 plot(t,state) ;
// xlabel('time (s)') ; 
// ylabel('x y theta phi ') ;
//%%%%%%%%%//%%%% END OF SCRIPT-FILE dbcr  %%%%%%%%%%%%


function []=dbcr2T()
//
//  CAR WITH 2 TRAILERS PACKING VIA FLATNESS AND FRENET FORMULAS
//  
//  debugg and verification via the integration 
//        of the non holonomic system.
//
//    February 1993
//
// ............................................................
// :         pierre ROUCHON  <rouchon@cas.ensmp.fr>           :
// : Centre Automatique et Systemes, Ecole des Mines de Paris :
// : 60, bd Saint Michel -- 75272 PARIS CEDEX 06, France      :
// :    Telephone: (1) 40 51 91 15 --- Fax: (1) 43 54 18 93   :
// :..........................................................:
//
// lengths 
//    bigL:  car length (m) 
//   d1: trailer 1 length (m)
//   d2: trailer 2 length (m)
// bigT: basic time interval for one  smooth motion (s)
// a0, a1, p(5): intermediate variables for polynomial 
//           curves definition
//
bigT = 1 ; 
bigL = 1 ; d1 = 1.5 ; d2 = 1 ; 
a0 =0 ; a1 = 0 ; b0 = 0 ;
p= [0 0 0 0 0 ] ;
//
// initial configuration
//   the system is described via the coordinates of last trailer
x2_1 = 0 ; y2_1 = 6 ; 
theta2_1= %pi/8; theta12_1 =  %pi/8 ; theta01_1= %pi/8 ;
                                  phi_1 = %pi/8 ;
//
// final configuration of the car 
x2_2 = 0 ; y2_2 = 0  ;
theta2_2= 0 ; theta12_2 = 0 ; theta01_2= 0 ;
                                   phi_2 = 0 ;
//
// Constraints: y2_1 > y2_2 and 
// the 4 angles  theta2_1,2
//               theta12_1,2
//               theta01_1,2
//               phi_1,2 
//   must belong to  ] -%pi/2 , + %pi/2 [
//               
//
// conputation of  intermediate configuration
LL=bigL+d1+d2 ;
x2_0 = maxi(x2_1,x2_2) ....
      + LL*abs(tan(theta2_1)) ....
      + LL*abs(tan(theta12_1)) .... 
      + LL*abs(tan(theta01_1)) .... 
      + LL*( abs(y2_1-y2_2)/(d1+d2+bigL) )^(1/2) ;
y2_0 = (y2_1+y2_2)/2 ;
//
//
//
// first polynomial curve
a0 = x2_0 ; b0 = y2_0 ;
a1 = x2_1 ; b1 = y2_1 ; 
p=cr2Tkf((b1-b0),theta2_1,theta12_1,theta01_1,phi_1) ;
//
// simulation of the first motion  0 -> T
//   time t between 0 and bigT
 theta2 = theta2_1 ;
 theta1 = theta12_1+theta2 ;
 theta0 = theta01_1+theta1 ;
 phi = phi_1 ;
 x0=x2_1+d2*cos(theta2)+d1*cos(theta1) ;
 y0=y2_1+d2*sin(theta2)+d1*sin(theta1) ;
 [t_1,state_1]=ode45('car2T',0,bigT, ....
                     [ x0 y0 theta0 theta1 theta2 phi ]);
// graphics 
 subplot(121);
   plot(t_1,state_1(:,1:2)) ;
   xlabel('time (s)') ; 
   ylabel('x_car y_car (m)') ;
 subplot(122);
   plot(t_1,state_1(:,3:6)) ;
   xlabel('time (s)') ; 
   ylabel('theta0 theta1 theta2 phi (rd)') ;
//
//
// second polynomial curve
a0 = x2_0 ; b0 = y2_0 ;
a1 = x2_2 ; b1 = y2_2 ; 
 p=cr2Tkf((b1-b0),theta2_2,theta12_2,theta01_2,phi_2) ;
//
// simulation of the second motion  bigT -> 2*bigT
//
// important remark: due to numerical instability of the  
//  integration during inverse motion, we integrate
//  from the final position 2 to the intermediate position 0.
//
 theta2 = theta2_2 ;
 theta1 = theta12_2+theta2 ;
 theta0 = theta01_2+theta1 ;
 phi = phi_2 ;
 x0=x2_2+d2*cos(theta2)+d1*cos(theta1) ;
 y0=y2_2+d2*sin(theta2)+d1*sin(theta1) ;
 [t_2,state_2]=ode45('car2T',0,bigT, ....
                     [ x0 y0 theta0 theta1 theta2 phi ]);
//
//
//
// graphics 
  t_2 = 2*bigT - t_2 ;
 subplot(121);
   plot(t_2,state_2(:,1:2)) ;
   xlabel('time (s)') ; 
   ylabel('x_car y_car (m)') ;
 subplot(122);
   plot(t_2,state_2(:,3:6)) ;
   xlabel('time (s)') ; 
   ylabel('theta0 theta1 theta2 phi (rd)') ;
//%%%%%%%%%%%%%% END OF SCRIPT-FILE dbcr2T  %%%%%%%%%%%%