File: dem01.dem

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (207 lines) | stat: -rw-r--r-- 5,876 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
mode(7)
//               SCILAB OBJECTS
//               1. SCALARS
// Copyright INRIA
a=1               //real constant
1==1              //boolean
'string'          //character string
z=poly(0,'z')     // polynomial with variable 'z' and with one root at zero
p=1+3*z+4.5*z^2   //polynomial 
r=z/p             //rational

//                2. MATRICES
A=[a+1 2 3
     0 0 atan(1)
     5 9 -1]      //3 x 3 constant matrix

b=[%t,%f]         //1 x 2 boolean matrix

Mc=['this','is';
    'a' ,'matrix']   //2 x 2 matrix of strings

Mp=[p,1-z;
    1,z*p]        //2 x 2 polynomial matrix

F=Mp/poly([1+%i 1-%i 1],'z')   //rational matrix

Sp=sparse([1,2;4,5;3,10],[1,2,3])   //sparse matrix

Sp(1,10)==Sp(1,1)                   //boolean sparse matrix

//                 3. LISTS
L=list(a,-(1:5), Mp,['this','is';'a','list'])   //list
L(2)(3)     //sub-entry in list
Lt=tlist(['mylist','color','position','weight'],'blue',[0,1],10)  //typed-list
Lt('color')      //extracting
Lt('weight')     //extracting
A=diag([2,3,4]);B=[1 0;0 1;0 0];C=[1 -1 0];D=0*C*B;x0=[0;0;0];
Sl=syslin('c',A,B,C,D,x0)    //Standard state-space linear system 
Sl("A"), Sl("C")             //Retrieving elements of a typed list
Slt=ss2tf(Sl)                // Transfer matrix
Slt('num'), Slt('den')
//                  OPERATIONS
v=1:5;W=v'*v                 //constant matrix multiplication
W(1,:)                       //extracting first row
W(:,$)                       //extracting last column
Mp'*Mp+eye                   //polynomial matrix
Mp1=Mp(1,1)+4.5*%i           //complex
Fi=C*(z*eye-A)^(-1)*B;       //transfer function evaluation
F(:,1)*Fi                    //operations with rationals
M=[Mp -Mp; Mp' Mp+eye]       //concatenation of polynomial matrices
[Fi, Fi(:,1)]                // ... or rationals
F=syslin('c',F);             
Num=F('num');Den=F('den');           //operation on transfer matrix

//                  SOME NUMERICAL PRIMITIVES
inv(A)                       //Inverse
inv(Mp)                      //Inverse
inv(Sl*Sl')                  //Product of two linear systems and inverse
w=ss2tf(ans)                 //Transfer function representation
w1=inv(ss2tf(Sl)*ss2tf(Sl'))    //Product of two transfer functions and inverse
clean(w-w1)                 
A=rand(3,3);;B=rand(3,1);n=contr(A,B)                 //Controllability
K=ppol(A,B,[-1-%i -1+%i -1])        //Pole placement
poly(A-B*K,'z')-poly([-1-%i -1+%i -1],'z')    //Check...

s=sin(0:0.1:5*%pi);
ss=fft(s(1:128),-1);        //FFT
xbasc();
plot2d3("enn",1,abs(ss)');      //simple plot


//              ON LINE DEFINITION OF FUNCTION
deff('[x]=fact(n)','if n==0 then x=1,else x=n*fact(n-1),end')
10+fact(5)
//                    OPTIMIZATION
deff('[f,g,ind]=rosenbro(x,ind)', 'a=x(2)-x(1)^2 , b=1-x(2) ,...
f=100.*a^2 + b^2 , g(1)=-400.*x(1)*a , g(2)=200.*a -2.*b ');
[f,x,g]=optim(rosenbro,[2;2],'qn')

//                   SIMULATION
a=rand(3,3)
e=expm(a)
deff('[ydot]=f(t,y)','ydot=a*y');
e(:,1)-ode([1;0;0],0,1,f)

//                  SYSTEM DEFINITION
s=poly(0,'s');
h=[1/s,1/(s+1);1/s/(s+1),1/(s+2)/(s+2)]
w=tf2ss(h);
ss2tf(w)
h1=clean(ans)

//             EXAMPLE: SECOND ORDER SYSTEM ANALYSIS
sl=syslin('c',1/(s*s+0.2*s+1))
instants=0:0.05:20;
//             step response:
y=csim('step',instants,sl);
xbasc();plot2d(instants',y')
//             Delayed step response
deff('[in]=u(t)','if t<3 then in=0;else in=1;end');
y1=csim(u,instants,sl);plot2d(instants',y1');

//             Impulse response;
yi=csim('imp',instants,sl);xbasc();plot2d(instants',yi');
yi1=csim('step',instants,s*sl);plot2d(instants',yi1');

//              Discretization
dt=0.05;
sld=dscr(tf2ss(sl),0.05);

//               Step response
u=ones(instants);
yyy=flts(u,sld);
xbasc();plot(instants,yyy)

//              Impulse response
u=0*ones(instants);u(1)=1/dt;
yy=flts(u,sld);
xbasc();plot(instants,yy)

//            system interconnexion
w1=[w,w];
clean(ss2tf(w1))
w2=[w;w];
clean(ss2tf(w2))

//               change of variable
z=poly(0,'z');
horner(h,(1-z)/(1+z))  //bilinear transform

//                 PRIMITIVES
H=[1.    1.    1.    0.;
   2.   -1.    0.    1;
   1.    0.    1.    1.;
   0.    1.    2.   -1];

ww=spec(H)

//             STABLE SUBSPACES
[X,d]=schur(H,'cont');
X'*H*X

[X,d]=schur(H,'disc');
X'*H*X

//Selection of user-defined eigenvalues (# 3 and 4 here);
deff('[flg]=sel(x)',...
'flg=0,ev=x(2)/x(3),...
 if abs(ev-ww(3))<0.0001|abs(ev-ww(4))<0.00001 then flg=1,end')
[X,d]=schur(H,sel)

X'*H*X

//               With matrix pencil
[X,d]=gschur(H,eye(H),sel)
X'*H*X

//            block diagonalization
[ab,x,bs]=bdiag(H);

inv(x)*H*x

//                     Matrix pencils
E=rand(3,2)*rand(2,3);
A=rand(3,2)*rand(2,3);
s=poly(0,'s');

w=det(s*E-A)   //determinant
[al,be]=gspec(A,E);
al./(be+%eps*ones(be))
roots(w)
[Ns,d]=coffg(s*E-A);    //inverse of polynomial matrix;
clean(Ns/d*(s*E-A))
[Q,M,i1]=pencan(E,A);   // Canonical form;
clean(M*E*Q)
clean(M*A*Q)

//           PAUSE-RESUME
write(%io(2),'pause command...');
write(%io(2),'TO CONTINUE...');
write(%io(2),'ENTER ''resume (or return) or click on resume!!''');
//pause;

//           CALLING EXTERNAL ROUTINE
foo=['void foo(a,b,c)';
     'double *a,*b,*c;';
     '{ *c = *a + *b; }'  ];
path=getcwd(); chdir(TMPDIR);
if getenv('WIN32','NO')=='OK' & getenv('COMPILER','NO')=='VC++' then 
	unix_s('del foo.c')
	write('foo.c',foo);
	WSCI=getenv('WSCI');
	cmd='nmake /f ""'+WSCI+'\demos\intro\MakeF.mak"" TARGET=foo SCIDIR1=""'+WSCI+'""';
	unix_s(cmd)  //Compiling...(needs a compiler);
	link('foo.dll','foo');   //Linking to Scilab
        unix_s('del foo.c')
else 
	unix_s('rm -f foo.c');
	write('foo.c',foo);
	unix_s('make foo.o')     //Compiling...(needs a compiler)
	link('foo.o','foo','C')    //Linking to Scilab
	unix_s('rm -f foo.c foo.o');
end 
chdir(path);

//5+7 by C function
call('foo',5,1,'d',7,2,'d','out',[1,1],3,'d')