File: Euler.map

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (180 lines) | stat: -rw-r--r-- 4,635 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright INRIA
with(share):

if SearchText(`Release 3`,interface(version))<>0 then
	matadd:=add;
	readshare(tex):
	readshare(macrofor,numerics):
elif SearchText(`Release 4`,interface(version))<>0 then
	readshare(tex,system):
	readshare(macrofor,numerics):
else
  ERROR(`Unknown Release`)
fi;



#----------------------------------------------------------------------------
#     GENERAL PART
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# Notation for Tex output 
# and TeX output routines
# this routines generates proper derivative notations up to second derivative
# for a set of variable. The TeX name for the variables is also given
# Warning this function will detroy previous values of texsub 
# Ex : addnotations( { x = `x`  , th = `\\theta`, y =`y` } );
#-----------------------------------------------------------------------------

addnotations:=proc(varlist)
	global texsub;
	local x,nots:
	nots:={};
	for x in varlist do
		nots:={op(nots),x, 
			cat(lhs(x),`d`)=cat(`\\dot{`,rhs(x),`}`),
			cat(lhs(x),`dd`)=cat(`\\ddot{`,rhs(x),`}`)}
	od;
	texsub:=nots
end:

sortieinit:=proc(filename)
	writeto(filename);
	writeto(terminal);
end:

sorties:=proc(filename,comment,exp)
	appendto(filename);
	lprint(comment);
	lprint(` `);
	mtex(exp,latex);
	writeto(terminal);
end:

sortiesI:=proc(filename,comment)
	appendto(filename);
	lprint(comment);
	writeto(terminal);
end:

sortiesM:=proc(filename,comment,expr)
	appendto(filename);
	lprint(comment);
	lprint(` `);
	map(x -> mtex(x,latex),expr);
	writeto(terminal);
end:

texwid:=120;
sortieinit(`systeme.tex`);

#---------------------------------------------------------------
# functions for computing euler equations 
# L : the Lagrangian,
# q,qd,qdd are the state vector and its derivatives
#---------------------------------------------------------------
with(`linalg`):

euler_equations:=proc(L,q,qd,qdd)
 	local k,m:
	m:=nops(q);
	v:=matrix(m,1,0);
	for i to m  do  
           v[i,1]:=LL(q[i])=simplify(time_diff(diff(L,qd[i]),q,qd,qdd)
				-diff(L,q[i]));
	od;
	eval(v):
	end:

#---------------------------------------------------------------
# Time derivative computation of an expression 
# depending on q,qd,qdd 
# used to compute Euler equations 
#---------------------------------------------------------------

	ttvar:=proc(xx)
    		if type(xx,`indexed`) 
		then cat(op(0,xx),`d`)[op(xx)]
		else cat(xx,`d`) fi
	end:


time_diff:=proc(phi,q,qd,qdd)
	local phi_copy,k,ttvar,diff_phi:
	# subtitution to specify that q,qd ,qdd depends on time 
	phi_copy:=phi:
	phi_copy:=subs(map( xx-> xx=xx(t),[op(q),op(qd)]),phi_copy):
	diff_phi:=diff(phi_copy,t):
	# subtitution to come back to our variables 
	diff_phi:=subs(map(xx->diff(xx(t),t)=ttvar(xx),[op(q),op(qd)]),
			diff_phi):
	diff_phi:=subs(map(xx->xx(t)=xx,[op(q),op(qd),op(qdd)]),diff_phi):
end:


#-----------------------------------------------------
# Rewritting the Euler equations to have a canonical form 
#           ..         .
# El= ME(q)  q + CE(q) q^2 + RE(q)
# Computation of ME,CE,RE 
# CEuler returns a list [ME,CE,RE];
#-----------------------------------------------------

CEuler:=proc(E,q,qd,qdd)
	local Me,Ce,Re:
	Me:=MME(E,q,qd,qdd):
	Ce:=CCE(E,q,qd,qdd):
	Re:=RRE(E,Me,Ce,q,qd,qdd):
	[eval(Me),eval(Ce),eval(Re)]:
	end:

MME:=proc(E,q,qd,qdd)
	local E1:
	E1:=eval(E):
	genmatrix([seq(E1[i,1],i=1..nops(qdd))],qdd):
	end:

#-----------------------------------------------------
# extract the CE(q) matrix  El= ME(q)  qdd + CE(q) qd^2 + RE(q)
#-----------------------------------------------------
	ttvarp:=proc(xx)
    		if type(xx,`indexed`) 
		then cat(op(0,xx),`2`)[op(xx)]
		else cat(xx,`2`) fi
	end:

CCE:=proc(E,q,qd,qdd)
 	local E_copy,q2d:
	E_copy:=eval(E):
	q2d:= map(x-> ttvarp(x),qd): 
	E_copy:=subs( map(x-> x**2=ttvarp(x),qd),eval(E_copy));
	genmatrix([seq(E_copy[i,1],i=1..nops(qd))],q2d);
	end:

#-----------------------------------------------------
# extract the RE(q) matrix  El= ME(q)  qdd + CE(q) qd^2 + RE(q)
#-----------------------------------------------------

RRE:=proc(E,ME,CE,q,qd,qdd)
	local MM:
	MM:=matadd(	E,
		matadd(multiply(ME,matrix(nops(q),1,qdd)),
	     	multiply(CE,matrix(nops(q),1,map(x->x**2,qd)))),
		1,-1);
	MM:=map((x)-> simplify(x),eval(MM)):
	end:

#
#-----------------------------------------------------
# FORTRAN GENERATION 
#-----------------------------------------------------

Gener:=proc(filename,fortranlist)
	global optimized;
	init_genfor();
	optimized:=true:
	writeto(filename):
	genfor(flist):
	writeto(terminal):
	end: