1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
xselect();xbasc();wdim=xget('wdim')
mode(1)
//
getf('SCI/demos/pendulum/simulation.sci')
getf('SCI/demos/pendulum/graphics.sci')
//
x_message('the cart')
// ----------------
//
xselect();
dpnd()
//
// equations
//----------
//state =[x x' theta theta']
//
mb=0.1;mc=1;l=0.3;m=4*mc+mb;//constants
//
x_message('open loop simulation');
//
y0=[0;0;0.1;0];
// y=ode(y0,0,0.03*(1:180),ivpd);
y=read('SCI/demos/pendulum/yy',4,180,'(e12.6)');
xbasc();
anim(y(1,:),y(3,:));
//
x_message('linearization')
//
x0=[0;0;0;0];u0=0;
[f,g,h,j]=lin(pendu,x0,u0);
pe=syslin('c',f,g,h,j);ssprint(pe)
//
x_message('checking the result');
//
f1=[0 1 0 0
0 0 -3*mb*9.81/m 0
0 0 0 1
0 0 6*(mb+mc)*9.81/(m*l) 0];
g1=[0 ; 4/m ; 0 ; -6/(m*l)];
h1=[1 0 0 0
0 0 1 0];
norm(f-f1,1)+norm(g-g1,1)+norm(h-h1,1)+norm(j,1)
x_message('analysis');
//---------
//stability (unstable system !)
//
spec(f)
//
//controlability
//
n=contr(f,g)
//
//observability
//
m1=contr(f',h(1,:)')
//
[m2,t]=contr(f',h(2,:)')
//
x_message('synthesis of a stabilizing controller');
//-------------------------------------------------
//
//pole placement technique
//only x and theta are observed : contruction of an observer
//to estimate the state : z'=(f-k*h)*z+k*y+g*u
//
to=0.1; //
k=ppol(f',h',-ones(4,1)/to)' //observer gain
//
//verification
//
// norm( poly(f-k*h,'z')-poly(-ones(4,1)/to,'z'))
//
kr=ppol(f,g,-ones(4,1)/to) //compensator gain
//
x_message('linear system pendulum-observer-compensator')
//---------------------------------------------
//
//state: [x x-z]
//
ft=[f-g*kr -g*kr
0*f f-k*h]
gt=[g;0*g];
ht=[h,0*h];
pr=syslin('c',ft,gt,ht);
// closed loop dynamics:
spec(pr(2))
//transfer matrix representation
hr=clean(ss2tf(pr),1.d-10)
//frequency analysis
// black(pr,0.01,100,['position','theta'])
g_margin(pr(1,1))
//
x_message('sampled system')
//---------------
//
t=to/5;
prd=dscr(pr,t);
spec(prd(2))
//
x_message('impulse response')
//-----------------
//
x0=[0;0;0;0;0;0;0;0];
u(1,180)=0;u(1,1)=1;
y=flts(u,prd,x0);
draw(0)
//
x_message('compensation of the non linear system');
//--------------------------------------
//
//simulation
//
t0=0;t1=t*(1:125);
x0=[0 0 0.4 0 0 0 0 0]'; //
yd=ode(x0,t0,t1,regu);
//
x_message('non linear simulation')
draw(1)
mode(0)
x_message('The end')
xbasc()
xset('wdim',wdim(1),wdim(2))
|