1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
function showinstr(mac)
if type(mac)==11 then
[in,out,txt]=string(mac)
x_message(txt)
end
function [X,Y]=field(x,y)
// x and y are two vectors defining a grid
// X and Y are two matrices which gives the grid point coordinates
//-------------------------------------------------------------
// Copyright INRIA
[rx,cx]=size(x);
[ry,cy]=size(y);
if rx<>1, write(%io(2),"x must be a row vector");return;end;
if ry<>1, write(%io(2),"y must be a row vector");return;end;
X=x.*.ones(cy,1);
Y=y'.*.ones(1,cx);
function plot3d3(x,y,z,vect,T,A,leg,flags,ebox)
// mesh draw of a solid surface described
// by a set of points ( as in the plot3d2 macro : see below )
// the mesh is drawn using the colums and rows of [x,y,z]
//---------------------------------------------------------
// Copyright INRIA
[lhs,rhs]=argn(0);
if rhs <= 3; vect=-1;end
if rhs >= 4 & vect<>-1
nobjs=prod(size(vect))+1;
[rx,cx]=size(x);
vect1=[0,vect,rx];
xx=[],yy=[],zz=[];
for i=1:nobjs;
xx=[x(vect1(i)+1:vect1(i+1),:),xx]
yy=[y(vect1(i)+1:vect1(i+1),:),yy]
zz=[z(vect1(i)+1:vect1(i+1),:);zz]
end
else
xx=x;yy=y;zz=z;
end
[n,p]=size(z);
if rhs < 9 then ebox=[-1,1,-1,1,-1,1];end
if rhs < 8 then flags=[3,4,2,3];end
if rhs < 7 then leg=" ";end
if rhs < 6 then A=45;end
if rhs < 5 then T=35;end
param3d1(xx,yy,list(zz,flags(1)*ones(1,p)),T,A,leg,flags(3:4),ebox)
param3d1(xx',yy',list(zz',flags(2)*ones(1,n)),T,A,leg,[0,flags(4)],ebox)
function [xx,yy,zz]=nf3d(x,y,z)
// 3d coding transformation
// from facets coded in three matrices x,y,z to scilab code for facets
// accepted by plot3d
//---------------------------------------------------------
// Copyright INRIA
[n1,n2]=size(x)
ind=ones(1,n1-1).*.[0 1 n1+1 n1]+ (1:n1-1).*.[1 1 1 1];
// ind=[1,2,n1+2,n1+1 , 2,3,n1+3,n1+2, .... ,n1-1,n1,2n1,2n1-1
ind2=ones(1,n2-1).*.ind+((0:n2-2)*n1).*.ones(ind);
nx=prod(size(ind2))
xx=matrix(x(ind2),4,nx/4);
yy=matrix(y(ind2),4,nx/4);
zz=matrix(z(ind2),4,nx/4);
function plot3d2(x,y,z,vect,varargin)
// plot3d2(x,y,z,vect,T,A,leg,flags,ebox)
// (x,y,z) description of a set of surfaces
// to Scilab description + call to plot3d
// (x,y,z) are three matrices which describe a surface
// the surface is composed of four sided polygons
// The x-coordinates of a facet are given by x(i,j),x(i+1,j),x(i,j+1),
// x(i+1,j+1)
// the vect vector is used when multiple surfaces are coded
// in the same (x,y,z) matrices. vect(j) gives the line
// at which the coding of the jth surface begins
// if vect==-1 means that vect is useless
// Copyright INRIA
//---------------------------------------------------------
[lhs,rhs]=argn(0);
if rhs <= 3; vect=-1;varargin=list();end
if rhs >= 4 & vect<>-1 then
nobjs=prod(size(vect))+1;
[rx,cx]=size(x);
vect1=[0,vect,rx];
xx=[],yy=[],zz=[];
for i=1:nobjs;
[xxl,yyl,zzl]=nf3d(x(vect1(i)+1:vect1(i+1),:),...
y(vect1(i)+1:vect1(i+1),:),...
z(vect1(i)+1:vect1(i+1),:)),...
xx=[xx,xxl];yy=[yy,yyl];zz=[zz,zzl];
end;
else
[xx,yy,zz]=nf3d(x,y,z)
end
plot3d(xx,yy,zz,varargin(:))
function [z]=dup(x,n)
// utility
// x is a vector this function returns [x,x,x,x...] or [x;x;x;x;..]
// depending on x
// Copyright INRIA
[nr,nc]=size(x)
if nr==1 then y=ones(n,1) ; z= x.*.y ;
else if nc<>1 then error("dup : x must be a vector");
else y=ones(1,n) ; z= x.*.y ; end;end
function [z] = bezier(p,t)
//comment : Computes a Bezier curves.
//For a test try:
//beziertest; bezier3dtest; nurbstest; beziersurftest; c1test;
//Uses the following functions:
//bezier, bezier3d, nurbs, beziersurface
//endcomment
//reset();
// Evaluate sum p_i B_{i,n}(t) the easy and direct way.
// p must be a k x n+1 matrix (n+1) points, dimension k.
// Copyright INRIA
n=size(p,'c')-1;// i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b=cumprod(b,'c');
if (size(t1z,'c')>0); b(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c')); end;
z=p*b';
// endfunction
function bezier3d (p)
// Shows a 3D Bezier curve and its polygon
// Copyright INRIA
t=linspace(0,1,300);
s=bezier(p,t);
dh=xget("dashes");
xset("dashes",3)
param3d(p(1,:),p(2,:),p(3,:),34,45)
xset("dashes",4);
param3d(s(1,:),s(2,:),s(3,:),34,45,"x@y@z",[0,0])
xset("dashes",dh);
xtitle('A 3d polygon and its Bezier curve');
// endfunction
function [X,Y,Z]=beziersurface (x,y,z,n)
// Compute a Bezier surface. Return {bx,by,bz}.
// Copyright INRIA
[lhs,rhs]=argn(0);
if rhs <= 3 ; n=20;end
t=linspace(0,1,n);
n=size(x,'r')-1; // i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b1=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b1=cumprod(b1,'c');
if (size(t1z,'c')>0);
b1(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c')); end;
n=size(x,'c')-1; // i=nonzeros(t~=1);
t1=(1-t); t1z= find(t1==0.0); t1(t1z)= ones(t1z);
T=dup(t./t1,n)';
b2=[((1-t')^n),(T.*dup((n-(1:n)+1)./(1:n),size(t,'c')))];
b2=cumprod(b2,'c');
if (size(t1z,'c')>0);
b2(t1z,:)= dup([ 0*ones(1,n),1],size(t1z,'c')); end;
X=b1*x*b2';Y=b1*y*b2';Z=b1*z*b2';
// endfunction
function cplxmap(z,w,varargin)
//cplxmap(z,w,T,A,leg,flags,ebox)
//cplxmap Plot a function of a complex variable.
// cplxmap(z,f(z))
// Copyright INRIA
x = real(z);
y = imag(z);
u = real(w);
v = imag(w);
M = max(u);
m = min(u);
s = ones(size(z));
//mesh(x,y,m*s,blue*s);
//hold on
[X,Y,U]=nf3d(x,y,u);
[X,Y,V]=nf3d(x,y,v);
Colors = sum(V,'r');
Colors = Colors - min(Colors);
Colors = 32*Colors/max(Colors);
plot3d1(X,Y,list(U,Colors),varargin(:))
function cplxroot(n,m,varargin)
//cplxroot(n,m,T,A,leg,flags,ebox)
//CPLXROOT Riemann surface for the n-th root.
// CPLXROOT(n) renders the Riemann surface for the n-th root.
// CPLXROOT, by itself, renders the Riemann surface for the cube root.
// CPLXROOT(n,m) uses an m-by-m grid. Default m = 20.
// Use polar coordinates, (r,theta).
// Cover the unit disc n times.
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs < 1, n = 3; end
if rhs < 2, m = 20; end
r = (0:m)'/m;
theta = - %pi*(-n*m:n*m)/m;
z = r * exp(%i*theta);
s = r.^(1/n) * exp(%i*theta/n);
cplxmap(z,s,varargin(:))
|