1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# Copyright INRIA
if SearchText(`Release 3`,interface(version))<>0 then
matadd:=add;
elif SearchText(`Release 4`,interface(version))<>0 then
1;
else
ERROR(`Unknown Release`)
fi;
read(`Euler.map`);
#----------------------------------------------------------------------------
# AND NOW THE WHEEL
#-----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# TeX Notations for my problem
#-----------------------------------------------------------------------------
ll:= {x = `x` , y = `y` , z= `z`,theta = `\\theta`, phi = `\\phi`,psi = `\\psi`,param =`\\alpha`, t = `\\eta` , LL = `\\LL`, _t = `\\lambda` } :
addnotations(ll):
#----------------------------------------------------------------------------
# Lagrangian for The wheel problem :
#---------------------------------------------------------------------------
# Number of parameters:
mpar:=5:
param:=[m,J[1],J[2],r,g]:
# Number of state variables
n:=6:
# Lagragian as a function of q[k], qd[k] k=1,..,n and
# param[m] m=1,..,mpar
# Lagrangian variables :
q := [ x,y,z,theta,phi,psi]:
qd := [ seq ( cat(q[i],`d`),i=1..n)]:
qdd:= [ seq ( cat(q[i],`dd`),i=1..n)]:
#-------------------------------------------
# Geometric computations
#-------------------------------------------
Bx:=vector([1,0,0]):
By:=vector([0,1,0]):
Bz:=vector([0,0,1]):
Bu1:=vector([cos(theta),sin(theta),0]):
Bu:= matadd(Bu1,Bz,cos(phi),-sin(phi)):
Bw:= matadd(Bu1,Bz,sin(phi),cos(phi)):
Bv:=crossprod(Bw,Bu):
Bv:=map((i)->factor(combine(i,trig)),Bv):
R:=transpose(matrix(3,3,[eval(Bu),eval(Bv),eval(Bw)])):
Rinv:=map((i)->factor(combine(i,trig)),inverse(R)):
# Omega in the (x,y,z) base
OmegaX:= matadd(Bz,matadd(Bv,Bw,phid,psid),thetad,1):
# Omega in the (u,v,w) base
Omega:=multiply(Rinv,OmegaX):
Omega:=map((i)->factor(combine(i,trig)),Omega):
# J[1]=J[2]=J_u : J[3]=J_w
EcJ:= J[1]*(Omega[1]^2+Omega[2]^2) +J[3]*Omega[3]^2:
L:=(1/2)*( param[1]*(qd[1]^2+qd[2]^2+qd[3]^2) + EcJ )
-param[1]*param[5]*q[3]:
sorties(`systeme.tex`,`Lagrangian`,L):
# Lhs of Euler equations
EL:=euler_equations(L,q,qd,qdd):
EE:=map((i)->rhs(i),EL):
# don't forget the LL macro in all.tex
sorties(`systeme.tex`,`variables :`,` q ` = matrix(nops(q),1,q)):
sortiesM(`systeme.tex`,`Lhs of Euler Equations`,[seq(EL[i,1],i=1..nops(q))]):
#-----------------------------------------------------
# Rewritting the Euler equations to have a canonical form
# .. .
# El= ME(q) q + CE(q) q^2 + RE(q,...)
# Computation of ME,CE,RE
#-----------------------------------------------------
XX:=CEuler(EE,q,qd,qdd):
# simplifying notations for output
sortiesI(`systeme.tex`,`$M(q)\\ddot{q}+C(q)\\dot{q}^2 +R(q,\\dot{q})$`):
sorties(`systeme.tex`,`M~:`,XX[1]):
sorties(`systeme.tex`,`C~:`,XX[2]):
sorties(`systeme.tex`,`R~:`,XX[3]):
#------------------------------------------------
# Constraints on the Wheel
#------------------------------------------------
# geometric constraints
hc:=[q[3]-param[4]*sin(q[5])]:
# dynamic constraints ( contains the derivative of geometric constraint )
# v_g + crossprod(OmegaX,Bu)=0
gg:=matadd(vector([qd[1],qd[2],qd[3]]),crossprod(OmegaX,Bu),1,r):
gg:=map((i)->simplify(expand(i)),gg):
nhc:=convert(gg,list):
sortiesM(`systeme.tex`,`Geometric Constraints hc=0,hc:`,hc);
sortiesM(`systeme.tex`,`Dynamic Constraints nhc=0,nhc`,nhc);
# Derivatives of constraints are of type Aprim qd = 0
Aprim:=genmatrix(nhc,qd):
sorties(`systeme.tex`,`Constraints : $A'(q)\\dot{q}$`,Aprim);
#----------------------------------------------
# Computing SS:=S(q);
# S(q) will solve Aprim S(q) = 0
# in The Euler equations Equ= A(q)' lambda + u
# the term A(q)lambda can be eliminated
# if we left-multiply euler equations by S(q)'
#----------------------------------------------
ncont:=3;
SS:=linsolve(Aprim,matrix(ncont,1,0)):
sorties(`systeme.tex`,` S(q)`,SS);
#------------------------------------------------------------------------
# The constraints are now dotq=S(q)eta
# can be used to see that eta =[phi,theta,psi]
# ( eta[i] is the maple variable ti )
# but the indices can be mixed and linsolve doesn't
# always return the same result
# We have to check the correspondance between t.sig(i)=[phi,theta,psi]
# and to change SS to have a good corespondance
#-------------------------------------------------------------------------
knsize:=3;
permut:={seq(SS[i+3,1]=t_s[i],i=1..knsize)}:
SS:=subs(permut,eval(SS)):
permut:={seq(t_s[i]=t[i],i=1..knsize)}:
SS:=subs(permut,eval(SS)):
S:= genmatrix(convert(convert(SS,vector),list),[seq( t[i],i=1..knsize)]):
sorties(`systeme.tex`,`$\\dot{q}=S(q)\\eta$ Kernel of $A(q)'$~:`,S):
#-----------------------------------------------------
# this multiplication eliminates the term A(q) lambda
# in the Euler equations
#-----------------------------------------------------
E1:=multiply(transpose(S),EE):
# sortiesM(`systeme.tex`,`$S(q)^T E$`,E1);
#-----------------------------------------------------
# since Aprim(q) dotq=0
# .
# q= S(q) eta ; here eta = [t1,t2]
# ..
# we use this equation to compute q
# Warning : t1 and t2 are time dependent
#-----------------------------------------------------
qt := [ seq (t[i] ,i=1..knsize)]:
qtd := [ seq (td[i] ,i=1..knsize)]:
qtdd:= [ seq (tdd[i],i=1..knsize)]:
qqdd:=map((x,y,z,t)-> time_diff(x,y,z,t),eval(SS),
[op(q),op(qt)],[op(qd),op(qtd)],[op(qdd),op(qtdd)]):
#-----------------------------------------------------
# .. .
# using q= d/dt [ S(q) eta] and q= S(q) eta
# we can subsitute these expressions in E1
#-----------------------------------------------------
E2:=subs(seq(qdd[i]=qqdd[i,1],i=1..nops(qdd)),eval(E1)):
E3:=subs(seq(qd[i]=SS[i,1],i=1..nops(qd)),eval(E2)):
#-----------------------------------------------------
# The global system is now
# .
# E3 = 0 and q= S(q) eta
#-----------------------------------------------------
E3:=map((x)-> simplify(x),E3):
sortiesM(`systeme.tex`,
`$S(q)^T E$ simplified with $\\dot{q}=S(q)\\eta $`,E3);
#------------------------------------------------------------------
# Trying to find canonical representation
# for the simplified euler equations
# .
# El= ME(q) t + RE(q,t)
# we use CEuler with a little trick in the parameter call qt,qt,qtd
#------------------------------------------------------------------
XX1:=CEulerP(E3,qt,qt,qtd):
MM3:=map((i)->factor(combine(i,trig)),XX1[1]):
RR3:=map((i)->factor(combine(i,trig)),XX1[2]):
sortiesI(`systeme.tex`,`a cononical form $M(q)\\dot{t}+R(q,t)$`);
sorties(`systeme.tex`,`C:`,MM3);
sorties(`systeme.tex`,`R:`,RR3);
#-----------------------------------------------------
# FORTRAN GENERATION
#-----------------------------------------------------
#-----------------------------------------------------
# First routine wheel(neq,t,z,zdot)
# z= [ A,dotA, X] ou A=[theta,phi,psi] X=x,y
# |0 I 0 |
# zdot =|0 0 0 | + Y
# |0 S1(q) 0| ( S1 : 2-first rows of S)
# where Y solves M(q)Y + C(q)dotA^2 + R =0
#-----------------------------------------------------
kn:=knsize:
fvar:= {theta= z[1],phi=z[2],psi=z[3],t[1]=z[4],
t[2]=z[5],t[3]=z[6],x=z[7],y=z[8]}:
MM3F:=subs(fvar,eval(MM3)):
# don't forget the minus sign
RR3F:=map((x)-> -x ,subs(fvar,eval(RR3))):
SSF:=subs(fvar,eval(SS)):
flist:=[subroutinem,`wheel`,[`neq`,`t`,`z`,`zdot`],
[
[ declaref,`implicit double precision`,[`(t)`] ],
[ parameterf,[`kn=`.kn]],
[ declaref,doubleprecision,[`t,z(8),zdot(8),r,j(3),m`]],
[ declaref,doubleprecision,[`me3s(kn,kn)`]],
[ declaref,doubleprecision,[`const(kn,1),w(3*kn),rcond`]],
[ declaref,integer,[`i,k,neq,ierr`]],
[ declaref,`data g`,[`/ 9.81/`]],
[ declaref,`data r`,[`/ 1.0/`] ],
[ declaref,`data m`,[`/ 1.0/`] ],
[ declaref,`data j`,[`/ 0.3,0.4,1.0/`] ],
[ matrixm,`me3s`,MM3F ] ,
[ matrixm,`const`,RR3F ] ,
[ dom , `i ` ,1,`kn `,1,[ equalf,`zdot(i)`,`z(i+kn)`]],
[commentf,` we must solve M z =const `],
[ callf , `dlslv`,[`me3s,kn,kn,Const,kn,1,w, rcond,ierr,1`]],
[ if_then_m,ierr<>0,[
[writef,6,ff_w,[]],
[formatf,ff_w,[`'Ill conditioned matrix!'`]]]],
[ dom , `i ` ,1,`kn `,1,[ equalf,`zdot(kn+i)`,`const(i,1)`]],
[ equalf, zdot(7),SSF[1,1]],
[ equalf, zdot(8),SSF[2,1]],
[returnf]]]:
Gener(`wheel.f`,flist):
#-----------------------------------------------------
# second routine wheelg(n,k,uf,vf,wf,xx)
# n,k integer
# uf,vf,wf ==> matrices of size (n,k)
# xx solution of ode => matrix of size(8,k)
# This routines will computes the coordinates of trajectories of n-points
# in the (x,y,z) space , givent their trajectories in the (u,v,w) space
# xx(:,t) gives is the evolution of the wheel
# uf,vf,wf : on entry the coordinates in the (u,v,w) space
# uf,vf,wf : on output the coordinates in the (x,y,z) space
#-----------------------------------------------------
ffvar:= {theta= xx[1,i2],phi=xx[2,i2],psi=xx[3,i2],t[1]=xx[4,i2],
t[2]=xx[5,i2],t[3]=xx[6,i2],x=xx[7,i2],y=xx[8,i2],
uf = uf[i1,i2],vf = vf[i1,i2] ,wf= wf[i1,i2] }:
Z:=multiply(R,vector([uf,vf,wf])):
Z:=matadd(vector([x,y,r*sin(phi)]),Z,1,r):
ZF:=subs(ffvar,eval(Z)):
fffvar:={ cos(xx[1,i2])=cs1,cos(xx[2,i2])=cs2,sin(xx[1,i2])=si1,sin(xx[2,i2])=si2}:
ZF:=subs(fffvar,eval(ZF)):
flist:=[subroutinem,`wheelg`,[`n,k,uf,vf,wf,xx`],
[
[ declaref,`implicit double precision`,[`(t)`] ],
[ declaref,doubleprecision,[`uf(n,k),vf(n,k),wf(n,k)`]],
[ declaref,doubleprecision,[`uu,vv,ww,r`]],
[ declaref,integer,[`n,k,i1,i2`]],
[ declaref,doubleprecision,[`xx(8,k)`]],
[ declaref,`data r`,[`/ 1.0/`] ],
[ dom , `i1 ` ,1,`n `,1,[
[ dom , `i2 ` ,1,`k `,1,
[
op(map((x)-> [ equalf,rhs(x),lhs(x) ],fffvar)),
[ equalf,`uu`,ZF[1]],
[ equalf,`vv`,ZF[2]],
[ equalf,`ww`,ZF[3]],
[ equalf,`uf(i1,i2)`,`uu`],
[ equalf,`vf(i1,i2)`,`vv`],
[ equalf,`wf(i1,i2)`,`ww`]]]]],
[returnf]]]:
Gener(`wheelg.f`,flist):
|