1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
% Copyright INRIA
Lagrangian
\begin{eqnarray*} && \frac{m\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)
}{2} + \frac{J_{1}\left({\sin(\phi)}^2\,\dot{\theta}^2+\dot{\phi}^2
\right)}{2} \\ &&\quad\mbox{} + \frac{J_{3}\left(\dot{\psi}+\cos(\phi)
\,\dot{\theta}\right)^2}{2} - m\,g\,z \end{eqnarray*}
variables :
\[ q = \left( \begin{array}{c} x \cr y \cr z \cr \theta \cr \phi
\cr \psi \end{array} \right) \]
Lhs of Euler Equations
\[ \LL(x) = m\,\ddot{x} \]
\[ \LL(y) = m\,\ddot{y} \]
\[ \LL(z) = m\,\ddot{z} + m\,g \]
\begin{eqnarray*} \LL(\theta) &=& 2\,J_{1}\,\sin(\phi)\,\dot{\theta}\,
\cos(\phi)\,\dot{\phi} + J_{1}\,\ddot{\theta} - J_{1}\,\ddot{\theta}\,
{\cos(\phi)}^2 \\ &&\quad\mbox{} + J_{3}\,\cos(\phi)\,\ddot{\psi} - 2
\,J_{3}\,\cos(\phi)\,\sin(\phi)\,\dot{\phi}\,\dot{\theta} + J_{3}\,{
\cos(\phi)}^2\,\ddot{\theta} \\ &&\quad\mbox{} - J_{3}\,\sin(\phi)\,
\dot{\phi}\,\dot{\psi} \end{eqnarray*}
\begin{eqnarray*} \LL(\phi) &=& J_{1}\,\ddot{\phi} - J_{1}\,\sin(\phi)
\,\dot{\theta}^2\,\cos(\phi) + J_{3}\,\sin(\phi)\,\dot{\theta}\,
\dot{\psi} \\ &&\quad\mbox{} + J_{3}\,\sin(\phi)\,\dot{\theta}^2\,\cos
(\phi) \end{eqnarray*}
\[ \LL(\psi) = J_{3}\,\ddot{\psi} - J_{3}\,\sin(\phi)\,\dot{\phi}\,
\dot{\theta} + J_{3}\,\cos(\phi)\,\ddot{\theta} \]
$M(q)\ddot{q}+C(q)\dot{q}^2 +R(q,\dot{q})$
M~:
$$ \left( \begin{array}{cccccc} m & 0 & 0 & 0 & 0 & 0 \cr 0 & m & 0 &
0 & 0 & 0 \cr 0 & 0 & m & 0 & 0 & 0 \cr 0 & 0 & 0 & J_{1}+J_{3}\,{\cos
(\phi)}^2-J_{1}\,{\cos(\phi)}^2 & 0 & J_{3}\,\cos(\phi) \cr 0 & 0 & 0
& 0 & J_{1} & 0 \cr 0 & 0 & 0 & J_{3}\,\cos(\phi) & 0 & J_{3}
\end{array} \right) $$
C~:
$$ \left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \cr 0 & 0 & 0 &
0 & 0 & 0 \cr 0 & 0 & 0 & 0 & 0 & 0 \cr 0 & 0 & 0 & 0 & 0 & 0 \cr 0 &
0 & 0 & -J_{1}\,\sin(\phi)\,\cos(\phi)+J_{3}\,\sin(\phi)\,\cos(\phi)
& 0 & 0 \cr 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) $$
R~:
$$ \left( \begin{array}{c} 0 \cr 0 \cr m\,g \cr 2\,J_{1}\,\sin(\phi)\,
\dot{\theta}\,\cos(\phi)\,\dot{\phi}-J_{3}\,\sin(\phi)\,\dot{\phi}\,
\dot{\psi}-2\,J_{3}\,\cos(\phi)\,\sin(\phi)\,\dot{\phi}\,\dot{\theta}
\cr J_{3}\,\sin(\phi)\,\dot{\theta}\,\dot{\psi} \cr -J_{3}\,\sin(\phi
)\,\dot{\phi}\,\dot{\theta} \end{array} \right) $$
Geometric Constraints hc=0,hc:
\[ z - r\,\sin(\phi) \]
Dynamic Constraints nhc=0,nhc
\[ \dot{x} - r\,\sin(\phi)\,\dot{\phi}\,\cos(\theta) - r\,\dot{\psi}\,
\sin(\theta) - r\,\cos(\phi)\,\sin(\theta)\,\dot{\theta} \]
\[ \dot{y} + r\,\cos(\phi)\,\cos(\theta)\,\dot{\theta} - r\,\sin(\phi)
\,\dot{\phi}\,\sin(\theta) + r\,\dot{\psi}\,\cos(\theta) \]
\[ \dot{z} - r\,\cos(\phi)\,\dot{\phi} \]
Constraints : $A'(q)\dot{q}$
$$ \left( \begin{array}{cccccc} 1 & 0 & 0 & -r\,\cos(\phi)\,\sin(
\theta) & -r\,\sin(\phi)\,\cos(\theta) & -r\,\sin(\theta) \cr 0 & 1 &
0 & r\,\cos(\phi)\,\cos(\theta) & -r\,\sin(\phi)\,\sin(\theta) & r\,
\cos(\theta) \cr 0 & 0 & 1 & 0 & -r\,\cos(\phi) & 0
\end{array} \right) $$
S(q)
$$ \left( \begin{array}{c} r\,\cos(\phi)\,\sin(\theta)\,\eta_1+r\,\sin
(\phi)\,\cos(\theta)\,\eta_2+r\,\sin(\theta)\,\eta_3 \cr -r\,\cos(\phi
)\,\cos(\theta)\,\eta_1+r\,\sin(\phi)\,\sin(\theta)\,\eta_2-r\,\cos(
\theta)\,\eta_3 \cr r\,\cos(\phi)\,\eta_2 \cr \eta_1 \cr \eta_2 \cr
\eta_3 \end{array} \right) $$
$\dot{q}=S(q)\eta$ Kernel of $A(q)'$~:
$$ \left( \begin{array}{ccc} r\,\cos(\phi)\,\sin(\theta) & r\,\sin(
\phi)\,\cos(\theta) & r\,\sin(\theta) \cr -r\,\cos(\phi)\,\cos(\theta)
& r\,\sin(\phi)\,\sin(\theta) & -r\,\cos(\theta) \cr 0 & r\,\cos(\phi
) & 0 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \end{array} \right) $$
$S(q)^T E$ simplified with $\dot{q}=S(q)\eta $
\begin{eqnarray*} && r^2\,\sin(\phi)\,m\,\cos(\phi)\,{{\eta_{1}}}^2 +
r^2\,m\,{\dot{\eta}_{2}} + r^2\,\sin(\phi)\,m\,{\eta_{1}}\,{\eta_{3}}
+ r\,\cos(\phi)\,m\,g + J_{1}\,{\dot{\eta}_{2}} \\ &&\quad\mbox{} - J
_{1}\,\sin(\phi)\,{{\eta_{1}}}^2\,\cos(\phi) + J_{3}\,\sin(\phi)\,{
\eta_{1}}\,{\eta_{3}} + J_{3}\,\sin(\phi)\,{{\eta_{1}}}^2\,\cos(\phi)
\end{eqnarray*}
\begin{eqnarray*} && -2\,r^2\,m\,\sin(\phi)\,{\eta_{1}}\,{\eta_{2}} +
r^2\,m\,\cos(\phi)\,{\dot{\eta}_{1}} + r^2\,m\,{\dot{\eta}_{3}} + J_{3
}\,{\dot{\eta}_{3}} - J_{3}\,\sin(\phi)\,{\eta_{2}}\,{\eta_{1}}
\\ &&\quad\mbox{} + J_{3}\,\cos(\phi)\,{\dot{\eta}_{1}}
\end{eqnarray*}
\begin{eqnarray*} && -2\,r^2\,\cos(\phi)\,m\,\sin(\phi)\,{\eta_{1}}\,{
\eta_{2}} + r^2\,{\cos(\phi)}^2\,m\,{\dot{\eta}_{1}} + r^2\,\cos(\phi)
\,m\,{\dot{\eta}_{3}} \\ &&\quad\mbox{} + 2\,J_{1}\,\sin(\phi)\,{\eta
_{1}}\,\cos(\phi)\,{\eta_{2}} + J_{1}\,{\dot{\eta}_{1}} - J_{1}\,{
\dot{\eta}_{1}}\,{\cos(\phi)}^2 + J_{3}\,\cos(\phi)\,{\dot{\eta}_{3}}
\\ &&\quad\mbox{} - 2\,J_{3}\,\cos(\phi)\,\sin(\phi)\,{\eta_{2}}\,{
\eta_{1}} + J_{3}\,{\cos(\phi)}^2\,{\dot{\eta}_{1}} - J_{3}\,\sin(\phi
)\,{\eta_{2}}\,{\eta_{3}} \end{eqnarray*}
a cononical form $M(q)\dot{t}+R(q,t)$
C:
$$ \left( \begin{array}{ccc} \frac{J_{1}}{2}+\frac{r^2\,m\,\cos(2\,
\phi)}{2}+\frac{r^2\,m}{2}+\frac{J_{3}\,\cos(2\,\phi)}{2}+\frac{J_{3}
}{2}-\frac{J_{1}\,\cos(2\,\phi)}{2} & 0 & \cos(\phi)\left(r^2\,m+J_{3}
\right) \cr 0 & J_{1}+r^2\,m & 0 \cr \cos(\phi)\left(r^2\,m+J_{3}
\right) & 0 & r^2\,m+J_{3} \end{array} \right) $$
R:
$$ \left( \begin{array}{c} -{\eta_{2}}\left(r^2\,m\,{\eta_{1}}\,\sin(2
\,\phi)+J_{3}\,\sin(\phi)\,{\eta_{3}}-J_{1}\,{\eta_{1}}\,\sin(2\,\phi)
+J_{3}\,{\eta_{1}}\,\sin(2\,\phi)\right) \cr \frac{r^2\,m\,{{\eta_{1}}
}^2\,\sin(2\,\phi)}{2}-\frac{J_{1}\,{{\eta_{1}}}^2\,\sin(2\,\phi)}{2}+
r^2\,\sin(\phi)\,m\,{\eta_{1}}\,{\eta_{3}}+r\,\cos(\phi)\,m\,g+J_{3}\,
\sin(\phi)\,{\eta_{1}}\,{\eta_{3}}+\frac{J_{3}\,{{\eta_{1}}}^2\,\sin(2
\,\phi)}{2} \cr -\sin(\phi)\,{\eta_{1}}\,{\eta_{2}}\left(2\,r^2\,m+J_{
3}\right) \end{array} \right) $$
|