File: arsimul.sci

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (130 lines) | stat: -rw-r--r-- 4,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function z=arsimul(a,b,d,sig,u,up,yp,ep)
//z=arsimul(a,b,d,sig,u,[up,yp,ep])
//            ou
//z=arsimul(ar,u,[up,yp,ep])
// Simulation of multidimensionnal ARMAX
// Model :
//   A(z^-1) z(k)= B(z^-1)u(k) + D(z^-1)*sig*e(k)
//      (z^-1) :delay  a1(z^-i) y_k= y_{k-i}
//   A(z)= Id+a1*z+...+a_r*z^r;  ( r=0  => A(z)=Id)
//   B(z)= b0+b1*z+...+b_s z^s;  ( s=-1 => B(z)=0)
//   D(z)= Id+d1*z+...+d_t z^t;  ( t=0  => D(z)=Id)
// z and e in R^n,  u in R^m
//
// Inputs :
//   a matrix [Id,a1,...,a_r]     dimension (n,(r+1)*n)
//   b matrix [b0,......,b_s]     dimension (n,(s+1)*m)
//   d matrix [Id,d_1,......,d_t] dimension (n,(t+1)*n)
//   u matrix (m,N), 
//         u(:,j)=u_j
//   sig matrix (n,n), e_{k} gaussian r.v
//
//   up, yp :  optionial args: past values
//      up=[ u_0,u_{-1},...,u_{s-1}];
//      yp=[ y_0,y_{-1},...,y_{r-1}];
//      ep=[ e_0,e_{-1},...,e_{r-1}];
//      default=)
// Output :
//      y(1),....,y(N)
//
// Method : State-space approach
// Auteur : J-Ph. Chancelier ENPC Cergrene
//!
//
// Copyright INRIA
[lhs,rhs]=argn(0)
//-compat type(a)==15 retain for list/tlist compatibility
if type(a)==15|type(a)==16,
   if rhs==2,z=arsimul(a(2),a(3),a(4),a(7),b);return;end
   if rhs==3,z=arsimul(a(2),a(3),a(4),a(7),b,d);return;end
   if rhs==4,z=arsimul(a(2),a(3),a(4),a(7),b,d,sig);return;end
   if rhs==5,z=arsimul(a(2),a(3),a(4),a(7),b,d,sig,u);return;end
   if rhs==6,z=arsimul(a(2),a(3),a(4),a(7),b,d,sig,u,up);return;end
   if rhs==7,z=arsimul(a(2),a(3),a(4),a(7),b,d,sig,u,up,yp);return;end
   if rhs==8,z=arsimul(a(2),a(3),a(4),a(7),b,d,sig,u,up,yp,ep);return;end
end
z=0;
[lhs,rhs]=argn(0)
[bl,bc]=size(b);[al,ac]=size(a);[dl,dc]=size(d);
adeg=int(ac/al);
[mmu,Nu]=size(u);
bdeg=int(bc/mmu);
ddeg=int(dc/dl);
// we build a state space representation.
nn=maxi([adeg,bdeg,ddeg])-1;
// Construction d'une representation d'etat
// Y_{n+1}= a_fff*Z_{n}  +b_fff*u_n +d_fff* e(n) 
// Z_{n+1}= Y_{n+1} + b0_fff *u_{n+1} + d0_fff*e_{n+1}
//
a1=[ -a(:,al+1:ac), 0*ones(al,al*(nn-adeg+1))];
a_fff=a1(:,1:al);
for j=2:nn,a_fff= [ a_fff ; a1(:,1+(j-1)*al:j*al)];end
a2=[diag(1*ones(1,nn-1),1).*.eye(al)];
a_fff=[a_fff,a2(:,al+1:nn*al)];
//----b_fff
b1=[ b(:,mmu+1:bc), 0*ones(al,mmu*(nn-bdeg+1))];
b_fff=b1(:,1:mmu);
for j=2:nn,b_fff= [ b_fff ; b1(:,1+(j-1)*mmu:j*mmu)];end
//----d_fff
d1=[ d(:,al+1:dc), 0*ones(al,al*(nn-ddeg+1))];
d_fff=d1(:,1:al)
for j=2:nn,d_fff= [ d_fff ; d1(:,1+(j-1)*al:j*al)];end
d_fff=d_fff+a_fff(:,1)
//
deff('[xdot]=fff(t,x)',['xdot1=a_fff*x(nn+1:$)+b_fff*u(:,t)+d_fff*br(:,t)';
	   'xdot2=xdot1+b(1:al,1:mmu)*u(:,t+1)+d(1:al,1:al)*br(:,t+1);';
	   'xdot=[xdot1;xdot2];']);
// Noise simulation.
br=sig*rand(al,Nu,'normal');
// Calcul des Conditions initiales pour le systeme en Y_n
// yp doit etre de taille (al,(adeg-1))
// up doit etre de taille (al,(bdeg-1))
// ep doit etre de taille (al,(adeg-1))
if rhs <=5,
   up=0*ones(mmu,(bdeg-1));
else
   up_s=size(up)
   if up_s(1)<>mmu|up_s(2)<>(bdeg-1) then
    write(%io(2)," up=[u(0),u(-1),..,] must be of dimension ("...
    +string(mmu)+','+string(bdeg-1));
    return;end
end
if rhs <=6,
   yp=0*ones(al,(adeg-1));
else
  yp_s=size(yp);
  if yp_s(1)<>al|yp_s(2)<>(adeg-1) then 
    write(%io(2)," yp=[y(0),y(-1),..,] must be of dimension ("...
    +string(al)+','+string(adeg-1));
    return;end
end
if rhs <=7,
   ep=0*ones(al,(ddeg-1));
else
  ep_s=size(ep);
  if ep_s(1)<>al|ep_s(2)<>(ddeg-1) then
    write(%io(2)," ep=[e(0),e(-1),..,] must be of dimension ("...
    +string(al)+','+string(ddeg-1));
    return;end
end;
yinit=[ yp, 0*ones(al,al*(nn-adeg+1))];
uinit=[up, 0*ones(al,mmu*(nn-bdeg+1))];
yinit=matrix(yinit,nn*al,1);
uinit=matrix(uinit,nn*mmu,1);
y1=a1*yinit+b1*uinit;
for i=1:nn-1, a1=[a1(:,al+1:nn*al), 0*ones(al,al)];
           b1=[ b1(:,mmu+1:nn*mmu), 0*ones(al,mmu)];
           y1=[y1;a1*yinit+b1*uinit];
end;
y1=[y1;y1+ b(1:al,1:mmu)*u(:,1)+d(1:al,1:al)*br(:,1)];
// Simulation par ode et calcul de la sortie
// z = premiere composante ``bloc'' de Y
if size(a_fff)==[0,1];
   z=b(1:al,1:mmu)*u(:,:)+d(1:al,1:al)*br(:,:);
else
   z=ode('discret',y1,1,2:Nu,fff);z=[y1,z];
   z=z(1:al,:) ;
end