1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
function [resn,g]=pfactors(pol,flag)
// Given polynomial pol returns in list resn polynomials of
// degree 1 or two which are the factors of pol.
// One has pol= g times product of entries of resn
// if flag=='c' unstable roots are reflected vs the imaginary axis
// if flag=='d' unstable roots are reflected vs unit circle
// Copyright INRIA
w=roots(pol);
n=size(w,'*');
if n==0 then resn=list();g=coeff(pol);return;end
co=coeff(pol);g=co(n+1);
resn=list();
[LHS,RHS]=argn(0);
if RHS==1 then flag=[];end
if flag==[] then RHS=1;end
if RHS==1 then
kk=1;k=1;
while %T
if abs(imag(w(kk)))<=%eps then
resn(k)=poly(w(kk),varn(pol));
kk=kk+1;k=k+1;
if kk>n then return;end
end
if abs(imag(w(kk)))>%eps then
resn(k)=real(poly([w(kk),w(kk+1)],varn(pol)));
kk=kk+2;k=k+1;
if kk>n then return;end
end
end
end //RHS=1
if RHS==2 then
kk=1;k=1;
if flag=='c' then
while %T
if abs(imag(w(kk)))<=%eps then
resn(k)=poly(-abs(w(kk)),varn(pol));
kk=kk+1;k=k+1;
if kk>n then return;end
end
if abs(imag(w(kk)))>%eps then
if real(w(kk))<0 then
resn(k)=real(poly([w(kk),w(kk+1)],varn(pol)));
else ;
resn(k)=real(poly([-w(kk),-w(kk+1)],varn(pol)));
end
kk=kk+2;k=k+1;
if kk>n then return;end
end
end
end //'c'
if flag=='d' then
while %T
wkk=w(kk);
if abs(imag(wkk))<=%eps then
[themin,which]=mini([abs(wkk),1/(abs(wkk))]);
if which==2 then g=-g*real(wkk);end
resn(k)=poly(sign(real(wkk))*themin,varn(pol));
kk=kk+1;k=k+1;
if kk>n then return;end
end
if abs(imag(wkk))>%eps then
if abs(wkk)<1 then
resn(k)=real(poly([wkk,w(kk+1)],varn(pol)));
else ;
// g=g*wkk*w(kk+1); w(kk+1)= conj(wkk)
g=g*abs(wkk)^2;
zp=[wkk,w(kk+1)];resn(k)=real(poly(ones(zp)./zp,varn(pol)));
end
kk=kk+2;k=k+1;
if kk>n then return;end
end
end
end //'d'
end //RHS=2
|