1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
function lp_norm=MFAG_epsilon_eta(mu_n,N,s,e,norm_type);
// This Software is ( Copyright INRIA . 1998 1 )
//
// INRIA holds all the ownership rights on the Software.
// The scientific community is asked to use the SOFTWARE
// in order to test and evaluate it.
//
// INRIA freely grants the right to use modify the Software,
// integrate it in another Software.
// Any use or reproduction of this Software to obtain profit or
// for commercial ends being subject to obtaining the prior express
// authorization of INRIA.
//
// INRIA authorizes any reproduction of this Software.
//
// - in limits defined in clauses 9 and 10 of the Berne
// agreement for the protection of literary and artistic works
// respectively specify in their paragraphs 2 and 3 authorizing
// only the reproduction and quoting of works on the condition
// that :
//
// - "this reproduction does not adversely affect the normal
// exploitation of the work or cause any unjustified prejudice
// to the legitimate interests of the author".
//
// - that the quotations given by way of illustration and/or
// tuition conform to the proper uses and that it mentions
// the source and name of the author if this name features
// in the source",
//
// - under the condition that this file is included with
// any reproduction.
//
// Any commercial use made without obtaining the prior express
// agreement of INRIA would therefore constitute a fraudulent
// imitation.
//
// The Software beeing currently developed, INRIA is assuming no
// liability, and should not be responsible, in any manner or any
// case, for any direct or indirect dammages sustained by the user.
//
// Any user of the software shall notify at INRIA any comments
// concerning the use of the Sofware (e-mail : FracLab@inria.fr)
//
// This file is part of FracLab, a Fractal Analysis Software
// function lp_norm=MFAG_epsilon_eta(mu_n,N,s,e,norm_type)
//
// Computes a matrix of the norm of the difference
// of computed Continuous Large Deviation spectrum
// of a 1d pre-multifractal measure
// with varying scale: eta(i) (related to the scale factor (s: eta=s*eta_n)
// and varying precision epsilon: e(j) (e)
//
// inputs : mu_n: input 1d pre-multifractal measure
// (normalized strictly positive vector)
// N: # of hoelder exponents
// (strictly positive integer scalar)
// s: scale factor
// (strictly positive vector)
// e: set the precision epsilon of the pdf
// (strictly positive scalar)
// norm_type: type of the Lp norm
// (1,2,inf,-inf,P)
//
// outputs :
// lp_norm matrix is [n-1,m*m]
// where [height,n]=size(s) and [height,m]=size(e)
// set nu_n, eta_n, m, n, lp_norm, f1, f2
[height,width]=size(mu_n);
nu_n=max(height,width);
eta_n=1./nu_n;
[height,m]=size(e);
[height,n]=size(s);
lp_norm=zeros(n-1,m*m);
f1=zeros(m,N);
f2=zeros(m,N);
// compute lp_norm
for j=1:m
[a,f]=mcfge(mu_n,N,2,s(1),e(j));
f1(j,:)=f;
end
for i=2:n
for j=1:m
[a,f]=mcfge(mu_n,N,2,s(i),e(j));
f2(j,:)=f;
for k=1:m
diff=abs(f2(j,:)-f1(k,:));
lp_norm(i-1,m*(j-1)+k)=norm(diff,norm_type);
end
end
f1=f2;
end
// plot lp_norm on figure(1) with grayplot
eta_i=eta_n.*s(2:n);
epsilon=e(1).*[1:m*m];
grayplot(epsilon,eta_i,lp_norm');
// return results
return;
|