1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
function g = gauss(n,a,k)
// This Software is ( Copyright INRIA . 1998 1 )
//
// INRIA holds all the ownership rights on the Software.
// The scientific community is asked to use the SOFTWARE
// in order to test and evaluate it.
//
// INRIA freely grants the right to use modify the Software,
// integrate it in another Software.
// Any use or reproduction of this Software to obtain profit or
// for commercial ends being subject to obtaining the prior express
// authorization of INRIA.
//
// INRIA authorizes any reproduction of this Software.
//
// - in limits defined in clauses 9 and 10 of the Berne
// agreement for the protection of literary and artistic works
// respectively specify in their paragraphs 2 and 3 authorizing
// only the reproduction and quoting of works on the condition
// that :
//
// - "this reproduction does not adversely affect the normal
// exploitation of the work or cause any unjustified prejudice
// to the legitimate interests of the author".
//
// - that the quotations given by way of illustration and/or
// tuition conform to the proper uses and that it mentions
// the source and name of the author if this name features
// in the source",
//
// - under the condition that this file is included with
// any reproduction.
//
// Any commercial use made without obtaining the prior express
// agreement of INRIA would therefore constitute a fraudulent
// imitation.
//
// The Software beeing currently developed, INRIA is assuming no
// liability, and should not be responsible, in any manner or any
// case, for any direct or indirect dammages sustained by the user.
//
// Any user of the software shall notify at INRIA any comments
// concerning the use of the Sofware (e-mail : FracLab@inria.fr)
//
// This file is part of FracLab, a Fractal Analysis Software
[nargout,nargin] = argn(0) ;
if nargin == 1
a = 2 ;
k = 0 ;
end
if nargin == 2
k = 0 ;
end
t=-(n-1)/2:(n-1)/2;
c=(a*log(10)/((n-1)/2)^2);
if k==0
g =exp(-c*t.^2);
else
g = polyval(polyGauss(k,c),t).* exp(-c*t.^2);
end
function p=polyGauss(k,c)
if k==1
p=[-2*c,0];
return;
end
p=[0,0,polyder(polyGauss(k-1,c))]-2*c*[polyGauss(k-1,c),0];
function x=polyval(p,t)
x=[];
n=length(p);
[K,L]=size(t);
for k=1:K
for l=1:L
x(k,l)=sum(p.*(t(k,l).^(mtlb_fliplr(0:n-1))));
end
end
function q=polyder(p)
n=length(p);
q=p(1:n-1).*mtlb_fliplr(1:n-1);
|