1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
function [x,t] = idmt(y,beta,M);
// This Software is ( Copyright INRIA . 1998 1 )
//
// INRIA holds all the ownership rights on the Software.
// The scientific community is asked to use the SOFTWARE
// in order to test and evaluate it.
//
// INRIA freely grants the right to use modify the Software,
// integrate it in another Software.
// Any use or reproduction of this Software to obtain profit or
// for commercial ends being subject to obtaining the prior express
// authorization of INRIA.
//
// INRIA authorizes any reproduction of this Software.
//
// - in limits defined in clauses 9 and 10 of the Berne
// agreement for the protection of literary and artistic works
// respectively specify in their paragraphs 2 and 3 authorizing
// only the reproduction and quoting of works on the condition
// that :
//
// - "this reproduction does not adversely affect the normal
// exploitation of the work or cause any unjustified prejudice
// to the legitimate interests of the author".
//
// - that the quotations given by way of illustration and/or
// tuition conform to the proper uses and that it mentions
// the source and name of the author if this name features
// in the source",
//
// - under the condition that this file is included with
// any reproduction.
//
// Any commercial use made without obtaining the prior express
// agreement of INRIA would therefore constitute a fraudulent
// imitation.
//
// The Software beeing currently developed, INRIA is assuming no
// liability, and should not be responsible, in any manner or any
// case, for any direct or indirect dammages sustained by the user.
//
// Any user of the software shall notify at INRIA any comments
// concerning the use of the Sofware (e-mail : FracLab@inria.fr)
//
// This file is part of FracLab, a Fractal Analysis Software
[nargout,nargin] = argn(0) ;
[yy,xy]=size(y) ;
if yy>xy , y = conj(y') ; else, end;
N = length(y) ;
if nargin==2
M = N ;
end
q = exp(1/(N*(beta(2)-beta(1)))) ;
fmin = 0.5/(q^(N/2-1)) ;
k = 1:N/2 ;
geo_f(k) = fmin*(exp((k-1).*log(q))) ;
itfmatx=[];
itfmatx = exp(2*%i*(0:M-1)'*geo_f(1:N/2)*%pi);
t = [0:M-1] ;
// Inverse Mellin transform computation
S = fft(mtlb_fftshift(y),-1) ; S=S(1:N/2) ;
for kk=1:M
x(kk)=real(2*integ(itfmatx(kk,:).*S,geo_f)) ;
end;
x = x(:) ;
|