File: lattn.sci

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (84 lines) | stat: -rw-r--r-- 2,521 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
function [la,lb]=lattn(n,p,cov)
//[la,lb]=lattn(n,p,cov)
//macro which solves recursively on n (p being fixed)
//the following system (normal equations), i.e. identifies
//the AR part(poles) of a vector ARMA(n,p) process
//
//                        |Rp+1 Rp+2 . . . . . Rp+n  |
//                        |Rp   Rp+1 . . . . . Rp+n-1|
//                        | .   Rp   . . . . .  .    |
//                        |                          |
//    |I -A1 -A2 . . .-An|| .    .   . . . . .  .    |=0
//                        | .    .   . . . . .  .    |
//                        | .    .   . . . . .  .    |
//                        | .    .   . . . . . Rp+1  |
//                        |Rp+1-n.   . . . . . Rp    |
//
//    where {Rk;k=1,nlag} is the sequence of empirical covariances
//
//   n   : maximum order of the filter
//   p   : fixed dimension of the MA part. If p is equal to -1,
//       : the algorithm reduces to the classical Levinson recursions.
//   cov : matrix containing the Rk(d*d matrices for
//       : a d-dimensional process).It must be given the
//       : following way:
//
//                        |  R0 |
//                        |  R1 |
//                    cov=|  R2 |
//                        |  .  |
//                        |  .  |
//                        |Rnlag|
//
//   la  : list-type variable, giving the successively calculated
//       : polynomials (degree 1 to degree n),with coefficients Ak
//!
//author: G. Le Vey  Date: 9 Febr. 1989
// Copyright INRIA

   [lhs,rhs]=argn(0);
   [l,d]=size(cov);
   if d>l,error('bad dimension for the covariance sequence');end
   if rhs<>3,error('wrong number of arguments');end
   a=eye(d);b=eye(d);
   z=poly(0,'z');la=list();lb=list();
   no=p-n-1;cv=cov;
     if no<0,
     for j=1:-no,cv=[cov(j*d+1:(j+1)*d,:)';cv];end;p=p-no;end
   for j=0:n-1,
   jd=jmat(j+1,d);
   r1=jd*cv((p+1)*d+1:(p+2+j)*d,:);
   r2=jd*cv(p*d+1:(p+1+j)*d,:);
   r3=jd*cv((p-1-j)*d+1:p*d,:);
   r4=jd*cv((p-j)*d+1:(p+1)*d,:);
   c1=coeff(a);c2=coeff(b);
   k1=(c1*r1)*inv(c2*r2);
   k2=(c2*r3)*inv(c1*r4);
   a1=a-k1*z*b;
   b=-k2*a+z*b;a=a1;
   la(j+1)=a;lb(j+1)=b;
   end;


function [la,lb]=lattp(n,p,cov)
// G Levey
//!
[l,d]=size(cov);
id=eye(d);
[a,b]=lattn(n,0,cov);a=a(n);b=b(n);
z=poly(0,'z');la=list();lb=list();
jd=jmat(n+1,d);
for j=0:p-1,
r1=jd*cov((j+1)*d+1:(j+n+2)*d,:);
r2=jd*cov(j*d+1:(j+n+1)*d,:);
c1=coeff(a);c2=coeff(b);
k=(c1*r1)*inv(c2*r2);
hst=-inv(c1(:,n*d+1:(n+1)*d));
r=k*hst;
a=(id-r*z)*a-k*z*b;
b=-hst*a;
la(j+1)=a;
end;