File: window.sci

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (148 lines) | stat: -rw-r--r-- 3,739 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
function [win_l,cwp]=window(wtype,n,par)
//[win_l,cwp]=window(wtype,n,par)
//macro which calculates symmetric window
// wtype :window type (re,tr,hn,hm,kr,ch)
// n     :window length
// par   :parameter 2-vector (kaiser window: par(1)=beta>0)
//       :                   (chebyshev window:par=<dp,df>)
//       :                   dp=main lobe width (0<dp<.5)
//       :                   df=side lobe height (df>0)
// win   :window
// cwp   :unspecified Chebyshev window parameter
//!
//author: C. Bunks   date: 8 Sept 1988
// Copyright INRIA

   [lhs,rhs]=argn(0);
   cwp=-1;
 
//Pre-calculations
 
   no2=(n-1)/2;
   xt=(-no2:no2);
   un=ones(1:n);
 
//Select the window type
 
   select wtype
   case 're' then           //Rectangular window.
     win_l=un
   case 'tr' then           //Triangular window.
      win_l=un-2*abs(xt)/(n+1);
   case 'hm' then           //Hamming window.
      win_l=.54*un+.46*cos(2*%pi*xt/(n-1));
   case 'hn' then           //Hanning window.
      win_l=.5*un+.5*cos(2*%pi*xt/(n-1));
   case 'kr' then           //Kaiser window with parameter beta (n,beta)
      beta=par(1);
      if beta>0 then
         xt=2*xt/(n-1);
         xt=beta*sqrt(un-xt.*xt);
         y=xt/2;
         yb=beta/2;
         e=un;
         eb=1.;
         de=un;
         deb=1.;
         for i=1:25,
            de=de.*y/i;
            deb=deb*yb/i;
            sde=de.*de;
            sdeb=deb*deb;
            e=e+sde;
            eb=eb+sdeb;
         end
         win_l=e/eb;
      else
      error('Parameter beta out of bounds (beta]0) --- program termination');
      end
    case 'ch' then           //Chebyshev window 
//    calculting element of par which is negative
      if par(1)<0 then,
         unknown='dp';
         df=par(2);
      else if par(2)<0 then,
         unknown='df';
         dp=par(1);
      else,
      error('Parameter par out of bounds prod(par)[0 --- program termination');
      end,
      end,
 
      select unknown
      case 'dp' then,
         arg2=1/cos(%pi*df);
         coshin2=log(arg2+sqrt(arg2*arg2-1));
         dp=2/(exp((n-1)*coshin2)+exp(-(n-1)*coshin2));
         cwp=dp;
      case 'df' then
         arg1=(1+dp)/dp;
         coshin1=log(arg1+sqrt(arg1*arg1-1));
         df=.5*(exp(coshin1/(n-1))+exp(-coshin1/(n-1)));
         df=1/df;
         df=imag(log(df+%i*sqrt(1-df*df)))/%pi;
         cwp=df;
      end,
 
//Pre-calculation
 
      np1=int((n+1)/2);
      ieo=2*np1-n;
      xn=n-1;
      fnf=n;
      x0=(3-cos(2*%pi*df))/(1+cos(2*%pi*df));
      alpha=(x0+1)/2;
      beta=(x0-1)/2;
      c2=xn/2;
 
//Obtain the frequency values of the Chebyshev window
 
      f=(0:n-1)/fnf;
      xarg=alpha*cos(2*%pi*f)+beta*un;
      pm1=dp*cos(c2*imag(log(xarg+%i*sqrt(un-xarg.*xarg))));
      arg=c2*log(xarg+sqrt(xarg.*xarg-un));
      pp1=dp*.5*(exp(arg)+exp(-arg));
 
      dx=0*un;
      for i=1:n,
         if abs(xarg(i))<=1 then
            dx(i)=1;
         end,
      end,
 
      pr=dx.*pm1+(un-dx).*pp1;
      pi=0*un;
 
      if ieo<>1 then
         pr=pr.*cos(%pi*f);
         pi=-pr.*sin(%pi*f);
         antisym=[1*ones(1:int(n/2)+1),-1*ones(int(n/2)+2:n)];
         pr=pr.*antisym;
         pi=pi.*antisym;
      end,
 
//Calculate the window coefficients using the inverse DFT
 
      twn=2*%pi/fnf;
      xj=(0:n-1);
      for i=1:np1;
         w(i)=sum(pr.*cos(twn*(i-1)*xj)+pi.*sin(twn*(i-1)*xj));
      end,
      c1=w(1);
      w=w/c1;
      if ieo==1 then
         win_l(np1:n)=w(1:np1);
         win_l(1:np1-1)=w(np1-1:-1:1);
      else,
         win_l(np1+1:n)=w(1:np1);
         win_l(1:np1)=w(np1:-1:1);
      end
      win_l=real(win_l');
 
//Error in window type
 
   else
      error('Unknown window type --- program termination'),
   end