File: armax.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (61 lines) | stat: -rw-r--r-- 2,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

armax(3)                       Scilab Function                       armax(3)
NAME
  armax - armax identification

CALLING SEQUENCE
  [arc,la,lb,sig,resid]=armax(r,s,y,u,[b0f,prf])

PARAMETERS

  y              : output process  y(ny,n); ( ny: dimension of y , n : sample
                 size)

  u              : input process   u(nu,n); ( nu: dimension of u , n : sample
                 size)

  r and s        : auto-regression orders r >=0 et s >=-1

  b0f            : optional parameter. Its default value is 0 and it means
                 that the coefficient b0 must be identified. if bof=1 the b0
                 is supposed to be zero and is not identified

  prf            : optional parameter for display control. If prf =1, the
                 default value, a display of the identified Arma is given.

  arc            : a Scilab arma object (see armac)

  la             : is the list(a,a+eta,a-eta) ( la = a in dimension 1) ;
                 where eta is the estimated standard deviation. ,
                 a=[Id,a1,a2,...,ar] where each ai is a matrix of size
                 (ny,ny)

  lb             : is the list(b,b+etb,b-etb) (lb =b in dimension 1) ; where
                 etb is the estimated standard deviation.  b=[b0,.....,b_s]
                 where each bi is a matrix of size (nu,nu)

  sig            : is the estimated standard deviation of the noise and
                 resid=[ sig*e(t0),....] (

DESCRIPTION
  armax is used to identify the coefficients of a n-dimensional ARX process
     A(z^-1)y= B(z^-1)u + sig*e(t)
  where e(t) is a n-dimensional white noise with variance I.  sig  an nxn
  matrix and A(z) and B(z):
  A(z) = 1+a1*z+...+a_r*z^r; ( r=0 => A(z)=1)
  B(z) = b0+b1*z+...+b_s z^s ( s=-1 => B(z)=0)
  for the method see Eykhoff in trends and progress in system identification,
  page 96.  with
   z(t)=[y(t-1),..,y(t-r),u(t),...,u(t-s)] and
   coef= [-a1,..,-ar,b0,...,b_s] we can write y(t)= coef* z(t) + sig*e(t) and
  the algorithm minimises sum_{t=1}^N ( [y(t)- coef'z(t)]^2) where
  t0=maxi(maxi(r,s)+1,1))).

EXAMPLE
  [arc,a,b,sig,resid]=armax(); // will gives an example in dimension 1

AUTHOR
  J-Ph. Chancelier.

SEE ALSO
  imrep2ss, time_id, arl2, armax, frep2tf