1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
arsimul(1) Scilab Function arsimul(1)
NAME
arsimul - armax simulation
CALLING SEQUENCE
[z]=arsimul(a,b,d,sig,u,[up,yp,ep])
[z]=arsimul(ar,u,[up,yp,ep])
PARAMETERS
ar : an armax process. See armac.
a : is the matrix[Id,a1,...,a_r] of dimension (n,(r+1)*n)
b : is the matrix[b0,......,b_s] of dimension (n,(s+1)*m)
d : is the matrix[Id,d_1,......,d_t] of dimension (n,(t+1)*n)
u : is a matrix (m,N), which gives the entry u(:,j)=u_j
sig : is a (n,n) matrix e_{k} is an n-dimensional Gaussian process
with variance I
up, yp : optional parameter which describe the past.
up=[ u_0,u_{-1},...,u_{s-1}];
yp=[ y_0,y_{-1},...,y_{r-1}];
ep=[ e_0,e_{-1},...,e_{r-1}]; if they are omitted, the past
value are supposed to be zero
z : z=[ y(1),....,y(N)]
DESCRIPTION
simulation of an n-dimensional armax process
A(z^-1) z(k)= B(z^-1)u(k) + D(z^-1)*sig*e(k)
A(z)= Id+a1*z+...+a_r*z^r; ( r=0 => A(z)=Id)
B(z)= b0+b1*z+...+b_s z^s; ( s=-1 => B(z)=0)
D(z)= Id+d1*z+...+d_t z^t; ( t=0 => D(z)=Id)
z et e are in R^n et u in R^m
METHOD
a state-space representation is constructed and ode with the option
"discret" is used to compute z
AUTHOR
J-Ph.C.
|