1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
.TH abinv 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
abinv - AB invariant subspace
.SH CALLING SEQUENCE
.nf
[X,dims,F,U,k,Z]=abinv(Sl,alfa,beta)
.fi
.SH PARAMETERS
.TP 10
sl
: \fVsyslin\fR list containing the matrices \fV[A,B,C,D]\fR.
.TP
alfa
: real number or vector (possibly complex, location of closed loop poles)
.TP
beta
: real number or vector (possibly complex, location of closed loop poles)
.TP
X
: orthogonal matrix of size nx (dim of state space).
.TP
dims
:
integer row vector \fVdims=[dimR,dimVg,dimV,noc,nos]\fR with \fVdimR<=dimVg<=dimV<=noc<=nos\fR
.TP
F
: real matrix (state feedback)
.TP
k
: integer (normal rank of \fVSl\fR)
.TP
Z
: non-singular linear system (\fVsyslin\fR list)
.SH DESCRIPTION
Output nulling subspace (maximal unobservable subspace) for
\fVSl\fR = linear system defined by a syslin list containing
the matrices [A,B,C,D] of \fVSl\fR.
The vector \fVdims=[dimR,dimVg,dimV,noc,nos]\fR gives the dimensions
of subspaces defined as columns od \fVX\fR.
The \fVdimV\fR first columns of \fVX\fR i.e \fVV=X(:,1:dimV)\fR,
span the AB-invariant subspace of \fVSl\fR i.e the unobservable subspace of
\fV(A+B*F,C+D*F)\fR. (\fVdimV=nx\fR iff C^(-1)(D)=X).
.LP
The \fVdimR\fR first columns of \fVX\fR i.e. \fVR=X(:,1:dimR)\fR spans
the controllable part of \fVSl\fR in \fVV\fR, \fV(dimR<=dimV)\fR. (\fVdimR=0\fR
for a left invertible system). \fVR\fR is the maximal controllability
subspace of \fVSl\fR in \fVkernel(C)\fR.
.LP
The \fVdimVg\fR first columns of \fVX\fR spans
\fVVg\fR=maximal AB-stabilizable subspace of \fVSl\fR. \fV(dimR<=dimVg<=dimV)\fR.
.LP
\fVF\fR is a decoupling feedback: for \fVX=[V,X2] (X2=X(:,dimV+1:nx))\fR one has
\fVX2'*(A+B*F)*V=0 and (C+D*F)*V=0\fR.
.LP
The zeros od \fVSl\fR are given by : \fVX0=X(:,dimR+1:dimV); spec(X0'*(A+B*F)*X0)\fR
i.e. there are \fVdimV-dimR\fR closed-loop fixed modes.
.LP
If the optional parameter \fValfa\fR is given as input,
the \fVdimR\fR controllable modes of \fV(A+BF)\fR in \fVV\fR
are set to \fValfa\fR (or to \fV[alfa(1), alfa(2), ...]\fR.
(\fValfa\fR can be a vector (real or complex pairs) or a (real) number).
Default value \fValfa=-1\fR.
.LP
If the optional real parameter \fVbeta\fR is given as input,
the \fVnoc-dimV\fR controllable modes of \fV(A+BF)\fR "outside" \fVV\fR
are set to \fVbeta\fR (or \fV[beta(1),beta(2),...]\fR). Default value \fVbeta=-1\fR.
.LP
In the \fVX,U\fR bases, the matrices
\fV[X'*(A+B*F)*X,X'*B*U;(C+D*F)*X,D*U]\fR
are displayed as follows:
.nf
[A11,*,*,*,*,*] [B11 * ]
[0,A22,*,*,*,*] [0 * ]
[0,0,A33,*,*,*] [0 * ]
[0,0,0,A44,*,*] [0 B42]
[0,0,0,0,A55,*] [0 0 ]
[0,0,0,0,0,A66] [0 0 ]
[0,0,0,*,*,*] [0 D2]
.fi
where the X-partitioning is defined by \fVdims\fR and
the U-partitioning is defined by \fVk\fR.
.LP
\fVA11\fR is \fV(dimR x dimR)\fR and has its eigenvalues set to \fValfa(i)'s\fR.
The pair \fV(A11,B11)\fR is controllable and \fVB11\fR has \fVnu-k\fR columns.
\fVA22\fR is a stable \fV(dimVg-dimR x dimVg-dimR)\fR matrix.
\fVA33\fR is an unstable \fV(dimV-dimVg x dimV-dimVg)\fR matrix (see \fVst_ility\fR).
.LP
\fVA44\fR is \fV(noc-dimV x noc-dimV)\fR and has its eigenvalues set to \fVbeta(i)'s\fR.
The pair \fV(A44,B42)\fR is controllable.
\fVA55\fR is a stable \fV(nos-noc x nos-noc)\fR matrix.
\fVA66\fR is an unstable \fV(nx-nos x nx-nos)\fR matrix (see \fVst_ility\fR).
.LP
\fVZ\fR is a column compression of \fVSl\fR and \fVk\fR is
the normal rank of \fVSl\fR i.e \fVSl*Z\fR is a column-compressed linear
system. \fVk\fR is the column dimensions of \fVB42,B52,B62\fR and \fVD2\fR.
\fV[B42;B52;B62;D2]\fR is full column rank and has rank \fVk\fR.
.LP
This function can be used for the (exact) disturbance decoupling problem.
.nf
DDPS:
Find u=Fx+Rd which reject Q*d and stabilizes the plant:
xdot=Ax+Bu+Qd
y=Cx+Du
DDPS has a solution iff Im(Q) is included in Vg + Im(B).
Let G=(X(:,dimVg+1:nx))'= left annihilator of Vg i.e. G*Vg=0;
B2=G*B; Q2=G*Q; DDPS solvable iff B2(:,1:k)*R1 + Q2 =0 has a solution.
R=[R1;*] is the solution (with F=output of abinv).
Im(Q2) is in Im(B2) means row-compression of B2=>row-compression of Q2
Then C*[(sI-A-B*F)^(-1)+D]*(Q+B*R) =0 (<=>G*(Q+B*R)=0)
.fi
.SH EXAMPLE
.nf
nu=3;ny=4;nx=7;
nrt=2;ngt=3;ng0=3;nvt=5;rk=2;
flag=list('on',nrt,ngt,ng0,nvt,rk);
Sl=ssrand(ny,nu,nx,flag);alfa=-1;beta=-2;
[X,dims,F,U,k,Z]=abinv(Sl,alfa,beta);
[A,B,C,D]=abcd(Sl);dimV=dims(3);dimR=dims(1);
V=X(:,1:dimV);X2=X(:,dimV+1:nx);
X2'*(A+B*F)*V
(C+D*F)*V
X0=X(:,dimR+1:dimV); spec(X0'*(A+B*F)*X0)
trzeros(Sl)
spec(A+B*F) //nr=2 evals at -1 and noc-dimV=2 evals at -2.
clean(ss2tf(Sl*Z))
A=diag(1:6);A(2,2)=-7;A(5,5)=-9;B=[1,2;0,3;0,4;0,5;0,0;0,0];C=[zeros(3,3),eye(3,3)];
sl=syslin('c',A,B,C);sl=ss2ss(sl,rand(6,6));
[X,dims,F,U,k,Z]=abinv(sl,alfa,beta);
[A,B,C,D]=abcd(sl);clean(X'*(A+B*F)*X)
clean(X'*B*U)
.fi
.SH AUTHOR
F.D.
.SH SEE ALSO
cainv, st_ility, ssrand, ss2ss
|