File: arl2.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (88 lines) | stat: -rw-r--r-- 2,573 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
.TH ARL2 4 "April 1993" "Scilab Group" "Scilab Function"        
.so ../sci.an 
.SH NAME
arl2 - SISO model realization by L2 transfer approximation
.SH CALLING SEQUENCE
.nf
h=arl2(y,den0,n [,imp])
h=arl2(y,den0,n [,imp],'all')
[den,num,err]=arl2(y,den0,n [,imp])
[den,num,err]=arl2(y,den0,n [,imp],'all')
.fi
.SH PARAMETERS
.TP 10
y 
: real vector or polynomial in \fVz^-1\fR, it contains the
coefficients of the Fourier's series of the rational system to
approximate (the impulse response)
.TP
den0
: a polynomial which gives an initial guess of the solution, it may be
\fVpoly(1,'z','c')\fR
.TP
n 
: integer, the degree of approximating transfer function (degree of
den)
.TP
imp 
: integer in \fV(0,1,2)\fR (verbose mode)
.TP
h
: transfer function \fVnum/den\fR or transfer matrix (column vector)
when flag \fV'all'\fR is given.
.TP
den
: polynomial or vector of polynomials, contains the denominator(s) of
the solution(s)
.TP
num
: polynomial or vector of polynomials, contains the numerator(s) of
the solution(s)
.TP
err
: real constant or vector , the l2-error achieved for each solutions
.SH DESCRIPTION
\fV[den,num,err]=arl2(y,den0,n [,imp]) \fR finds a pair of polynomials
\fVnum\fR and \fVden\fR such that the transfer function \fVnum/den\fR
is stable and its impulse response approximates (with a minimal l2
norm) the vector \fVy\fR assumed to be completed by an infinite number
of zeros. 

.IG	
If y(z)  =  y(1)(1/z)+y(2)(1/z^2)+ ...+ y(ny)(1/z^ny) 
.FI
.LA If~:$$ y(z)= y(1)({ 1 \over z})+y(2)({ 1 \over z})^2+\dots
.LA  + y(ny)({ 1 \over z})^ny $$
then l2-norm of \fVnum/den - y(z)\fR is \fVerr\fR.
.LP
\fVn\fR is the degree of the polynomial \fVden\fR.
.LP
The \fVnum/den\fR  transfer function is a L2 approximant of the
Fourier's series of the rational system.
.LP
Various intermediate results are printed according to \fVimp\fR.

.LP
\fV[den,num,err]=arl2(y,den0,n [,imp],'all') \fR  returns in the
vectors of polynomials \fVnum\fR and \fVden\fR  a set of local
optimums for the problem. The solutions are sorted with increasing
errors \fVerr\fR. In this case \fVden0\fR is already assumed to be 
\fVpoly(1,'z','c')\fR
.SH EXAMPLE
.nf
v=ones(1,20);
xbasc();
plot2d1('enn',0,[v';zeros(80,1)],2,'051',' ',[1,-0.5,100,1.5])

[d,n,e]=arl2(v,poly(1,'z','c'),1)
plot2d1('enn',0,ldiv(n,d,100),2,'000')
[d,n,e]=arl2(v,d,3)
plot2d1('enn',0,ldiv(n,d,100),3,'000')
[d,n,e]=arl2(v,d,8)
plot2d1('enn',0,ldiv(n,d,100),5,'000')

[d,n,e]=arl2(v,poly(1,'z','c'),4,'all')
plot2d1('enn',0,ldiv(n(1),d(1),100),10,'000')
.fi
.SH SEE ALSO
ldiv, imrep2ss, time_id, armax, frep2tf