File: cainv.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (83 lines) | stat: -rw-r--r-- 2,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

cainv(1)                       Scilab Function                       cainv(1)
NAME
  cainv -  Dual of abinv

CALLING SEQUENCE
  [X,dims,J,Y,k,Z]=cainv(Sl,alfa,beta)

PARAMETERS

  sl        : syslin list containing the matrices [A,B,C,D].

  alfa      : real number or vector (possibly complex, location of closed
            loop poles)

  alfa      : real number or vector (possibly complex, location of closed
            loop poles)

  X         : orthogonal matrix of size nx (dim of state space).

  dims      : integer row vector dims=[nd1,nu1,dimS,dimSg,dimN]  (5 entries,
            nondecreasing order)

  J         : real matrix (output injection)

  Y         : orthogonal matrix of size ny (dim of output space).

  k         : integer (normal rank of Sl)

  Z         : non-singular linear system (syslin list)

DESCRIPTION
  cainv finds a bases (X,Y) (of state space and output space resp.) and out-
  put injection matrix J such that the matrices of Sl in bases (X,Y) are
  displayed as:

                    [A11,*,*,*,*,*]                [*]
                    [0,A22,*,*,*,*]                [*]
     X'*(A+J*C)*X = [0,0,A33,*,*,*]   X'*(B+J*D) = [*]
                    [0,0,0,A44,*,*]                [0]
                    [0,0,0,0,A55,*]                [0]
                    [0,0,0,0,0,A66]                [0]

            Y*C*X = [0,0,C13,*,*,*]          Y*D = [*]
                    [0,0,0,0,0,C26]                [0]

  The partition of X is defined by the vector dims=[nd1,nu1,dimS,dimSg,dimN]
  and the partition of Y is determined by k.
  Eigenvalues of A11 (nd1 x nd1) are unstable.  Eigenvalues of A22 (nu1-nd1 x
  nu1-nd1) are stable.

  The pair (A33, C13) (dimS-nu1 x dimS-nu1, k x dimS-nu1) is observable, and
  eigenvalues of A33 are set to alfa.

  Matrix A44 (dimSg-dimS x dimSg-dimS) is unstable.  Matrix A55 (dimN-
  dimSg,dimN-dimSg) is stable

  The pair (A66,C26) (nx-dimN x nx-dimN) is observable, and eigenvalues of
  A66 set to beta.

  The dimS first columns of X span S= smallest (C,A) invariant subspace which
  contains Im(B), dimSg first columns of X span Sg the maximal "complementary
  detectability subspace" of Sl

  The dimN first columns of X span the maximal "complementary observability
  subspace" of Sl. (dimS=0 iff B(ker(D))=0).

  This function can be used to calculate an unknown input observer:
  // DDEP: dot(x)=A x + Bu + Gd
  //           y= Cx   (observation)
  //           z= Hx    (z=variable to be estimated, d=disturbance)
  //  Find: dot(w) = Fw + Ey + Ru such that
  //          zhat = Mw + Ny
  //           z-Hx goes to zero at infinity
  //  Solution exists iff Ker H contains Sg(A,C,G) inter KerC
  //i.e. H is such that:
  // For any W which makes a column compression of [Xp(1:dimSg,:);C]
  // with Xp=X' and [X,dims,J,Y,k,Z]=cainv(syslin('c',A,G,C));
  // [Xp(1:dimSg,:);C]*W = [0 | *] one has
  // H*W = [0 | *]  (with at least as many aero columns as above).

SEE ALSO
  abinv, dt_ility