1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
flts(1) Scilab Function flts(1)
NAME
flts - time response (discrete time, sampled system)
CALLING SEQUENCE
[y [,x]]=flts(u,sl [,x0])
[y]=flts(u,sl [,past])
PARAMETERS
u : matrix (input vector)
sl : list (linear system syslin)
x0 : vector (initial state ; default value=0)
past : matrix (of the past ; default value=0)
x,y : matrices (state and output)
DESCRIPTION
State-space form:
sl is a syslin list containing the matrices of the following linear system
sl=syslin('d',A,B,C,D) (see syslin):
x[t+1] = A x[t] + B u[t]
y[t] = C x[t] + D u[t]
or, more generally, if D is a polynomial matrix (p = degree(D(z))) :
D(z)=D_0 + z D_1 + z^2 D_2 +..+ z^p D_p
y[t] = C x[t] + D_0 u[t] + D_1 u[t+1] +..+ D_[p] u[t+p]
u=[u0,u1,... un] (input)
y=[y0,y1,... yn-p] (output)
x=x[n-p+1] (final state, used as x0 at next call to flts)
Transfer form:
y=flts(u,sl[,past]). Here sl is a linear system in transfer matrix
representation i.e
sl=syslin('d',transfer_matrix) (see syslin).
past = [u ,..., u ]
[ -nd -1]
[y ,..., y ]
[ -nd -1]
is the matrix of past values of u and y.
nd is the maximum of degrees of lcm's of each row of the denominator matrix
of sl.
u=[u0 u1 ... un] (input)
y=[y0 y1 ... yn] (output)
p is the difference between maximum degree of numerator and maximum degree
of denominator
EXAMPLE
sl=syslin('d',1,1,1);u=1:10;
y=flts(u,sl);
plot2d2("onn",(1:size(u,'c'))',y')
[y1,x1]=flts(u(1:5),sl);y2=flts(u(6:10),sl,x1);
y-[y1,y2]
//With polynomial D:
z=poly(0,'z');
D=1+z+z^2; p =degree(D);
sl=syslin('d',1,1,1,D);
y=flts(u,sl);[y1,x1]=flts(u(1:5),sl);
y2=flts(u(5-p+1:10),sl,x1); // (update)
y-[y1,y2]
//Delay (transfer form): flts(u,1/z)
// Usual responses
z=poly(0,'z');
h=(1-2*z)/(z^2+0.3*z+1)
u=zeros(1,20);u(1)=1;
imprep=flts(u,tf2ss(h)); //Impulse response
plot2d2("onn",(1:size(u,'c'))',imprep')
u=ones(1,20);
stprep=flts(u,tf2ss(h)); //Step response
plot2d2("onn",(1:size(u,'c'))',stprep')
//
// Other examples
A=[1 2 3;0 2 4;0 0 1];B=[1 0;0 0;0 1];C=eye(3,3);Sys=syslin('d',A,B,C);
H=ss2tf(Sys); u=[1;-1]*(1:10);
//
yh=flts(u,H); ys=flts(u,Sys);
norm(yh-ys,1)
//hot restart
[ys1,x]=flts(u(:,1:4),Sys);ys2=flts(u(:,5:10),Sys,x);
norm([ys1,ys2]-ys,1)
//
yh1=flts(u(:,1:4),H);yh2=flts(u(:,5:10),H,[u(:,2:4);yh(:,2:4)]);
norm([yh1,yh2]-yh,1)
//with D<>0
D=[-3 8;4 -0.5;2.2 0.9];
Sys=syslin('d',A,B,C,D);
H=ss2tf(Sys); u=[1;-1]*(1:10);
rh=flts(u,H); rs=flts(u,Sys);
norm(rh-rs,1)
//hot restart
[ys1,x]=flts(u(:,1:4),Sys);ys2=flts(u(:,5:10),Sys,x);
norm([ys1,ys2]-rs,1)
//With H:
yh1=flts(u(:,1:4),H);yh2=flts(u(:,5:10),H,[u(:,2:4); yh1(:,2:4)]);
norm([yh1,yh2]-rh)
SEE ALSO
ltitr, dsimul, rtitr
|