File: gfrancis.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (50 lines) | stat: -rw-r--r-- 1,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

gfrancis(1)                    Scilab Function                    gfrancis(1)
NAME
  gfrancis - Francis equations for tracking

CALLING SEQUENCE
  [L,M,T]=gfrancis(Plant,Model)

PARAMETERS

  Plant          : syslin list

  Model          : syslin list

  L,M,T          : real matrices

DESCRIPTION
  Given the the linear plant:
      x'= F*x + G*u
      y = H*x + J*u
  and the linear model
      xm'= A*xm + B*um
      ym = C*xm + D*um
  the goal is for the plant to track the model i.e. e = y - ym ---> 0 while
  keeping stable the state x(t) of the plant. u is given by feedforward and
  feedback
   u = L*xm + M*um + K*(x-T*xm) = [K , L-K*T] *(x,xm) + M*um
  The matrices T,L,M satisfy generalized Francis equations
      F*T + G*L = T*A
      H*T + J*L = C
            G*M = T*B
            J*M = D
  The matrix K must be chosen as stabilizing the pair (F,G) See example of
  use in directory demos/tracking.

EXAMPLE
  Plant=ssrand(1,3,5);
  [F,G,H,J]=abcd(Plant);
  nw=4;nuu=2;A=rand(nw,nw);
  st=maxi(real(spec(A)));A=A-st*eye(A);
  B=rand(nw,nuu);C=2*rand(1,nw);D=0*rand(C*B);
  Model=syslin('c',A,B,C,D);
  [L,M,T]=gfrancis(Plant,Model);
  norm(F*T+G*L-T*A,1)
  norm(H*T+J*L-C,1)
  norm(G*M-T*B,1)
  norm(J*M-D,1)

SEE ALSO
  lqg, ppol