File: gfrancis.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (61 lines) | stat: -rw-r--r-- 1,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
.TH gfrancis 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
gfrancis - Francis equations for tracking
.SH CALLING SEQUENCE
.nf
[L,M,T]=gfrancis(Plant,Model)
.fi
.SH PARAMETERS
.TP 15
Plant
: \fVsyslin\fR list
.TP 15
Model
: \fVsyslin\fR list
.TP 15
L,M,T
: real matrices
.SH DESCRIPTION
Given the the linear plant:
.nf
    x'= F*x + G*u 
    y = H*x + J*u
.fi
and the linear model
.nf
    xm'= A*xm + B*um
    ym = C*xm + D*um
.fi
the goal is for the plant to track the model i.e. \fVe = y - ym ---> 0\fR
while keeping stable the state x(t) of the plant. 
\fVu\fR is given by feedforward and feedback
.nf
 u = L*xm + M*um + K*(x-T*xm) = [K , L-K*T] *(x,xm) + M*um
.fi
The matrices T,L,M satisfy generalized Francis equations
.nf
    F*T + G*L = T*A
    H*T + J*L = C
          G*M = T*B
          J*M = D
.fi
The matrix \fVK\fR must be chosen as stabilizing the pair \fV(F,G)\fR
See example of use in directory \fVdemos/tracking\fR.
.SH EXAMPLE
.nf
Plant=ssrand(1,3,5);
[F,G,H,J]=abcd(Plant);
nw=4;nuu=2;A=rand(nw,nw);
st=maxi(real(spec(A)));A=A-st*eye(A);
B=rand(nw,nuu);C=2*rand(1,nw);D=0*rand(C*B);
Model=syslin('c',A,B,C,D);
[L,M,T]=gfrancis(Plant,Model);
norm(F*T+G*L-T*A,1)
norm(H*T+J*L-C,1)
norm(G*M-T*B,1)
norm(J*M-D,1)
.fi
.SH SEE ALSO
lqg, ppol