File: lqe.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (54 lines) | stat: -rw-r--r-- 1,162 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
.TH lqe 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an 
.SH NAME
lqe - linear quadratic estimator (Kalman Filter)
.SH CALLING SEQUENCE
.nf
[K,X]=lqe(P21) 
.fi
.SH PARAMETERS
.TP 10
P21
: \fVsyslin\fR list
.TP 10
K, X
: real matrices
.SH DESCRIPTION
\fVlqe\fR returns the Kalman gain for the filtering
problem in continuous or discrete time.
.LP
\fVP21\fR is a \fVsyslin\fR list representing the system \fVP21=[A,B1,C2,D21]\fR
.LP
The input to \fVP21\fR is a white noise with variance:
.nf
     [B1 ]               [Q  S]
BigV=[   ] [ B1' D21'] = [    ]
     [D21]               [S' R]
.fi
\fVX\fR is the solution of the stabilizing Riccati 
equation and \fVA+K*C2\fR is stable.

.LP
In continuous time:
.nf
(A-S*inv(R)*C2)*X+X*(A-S*inv(R)*C2)'-X*C2'*inv(R)*C2*X+Q-S*inv(R)*S'=0
.fi
.nf
K=-(X*C2'+S)*inv(R)
.fi
.LP
In discrete time:
.nf
X=A*X*A'-(A*X*C2'+B1*D21')*pinv(C2*X*C2'+D21*D21')*(C2*X*A'+D21*B1')+B1*B1'
.fi
\fVK=-(A*X*C2'+B1*D21')*pinv(C2*X*C2'+D21*D21')\fR
.LP
\fVxhat(t+1)= E(x(t+1)| y(0),...,y(t))\fR (one-step predicted \fVx\fR)
satisfies the recursion:
.nf
xhat(t+1)=(A+K*C2)*xhat(t) - K*y(t).
.fi
.SH SEE ALSO
lqr
.SH AUTHOR
F. D.