File: lqg2stan.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (61 lines) | stat: -rw-r--r-- 1,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

lqg2stan(1)                    Scilab Function                    lqg2stan(1)
NAME
  lqg2stan - LQG to standard problem

CALLING SEQUENCE
  [P,r]=lqg2stan(P22,bigQ,bigR)

PARAMETERS

  P22       : syslin list (nominal plant) in state-space form

  bigQ      : [Q,S;S',N] (symmetric) weighting matrix

  bigR      : [R,T;T',V] (symmetric) covariance matrix

  r         : 1x2 row vector = (number of measurements, number of inputs)
            (dimension of
             the 2,2 part of P)

  P         : syslin list (augmented plant)

DESCRIPTION
  lqg2stan  returns the augmented plant for linear LQG (H2) controller
  design.

  P22=syslin(dom,A,B2,C2) is the nominal plant; it can be in continuous time
  (dom='c') or discrete time (dom='d').
    .
    x = Ax + w1 + B2u
    y = C2x + w2
  for continuous time plant.
    x[n+1]= Ax[n] + w1 + B2u
        y = C2x + w2
  for discrete time plant.

  The (instantaneous) cost function is [x' u'] bigQ [x;u].

  The covariance of [w1;w2] is E[w1;w2] [w1',w2'] = bigR

  If [B1;D21] is a factor of bigQ, [C1,D12] is a factor of bigR and
  [A,B2,C2,D22] is a realization of P22, then P is a realization of
  [A,[B1,B2],[C1,-C2],[0,D12;D21,D22].  The (negative) feedback computed by
  lqg stabilizes P22, i.e. the poles of cl=P22/.K are stable.

EXAMPLE
  ny=2;nu=3;nx=4;
  P22=ssrand(ny,nu,nx);
  bigQ=rand(nx+nu,nx+nu);bigQ=bigQ*bigQ';
  bigR=rand(nx+ny,nx+ny);bigR=bigR*bigR';
  [P,r]=lqg2stan(P22,bigQ,bigR);K=lqg(P,r);  //K=LQG-controller
  spec(h_cl(P,r,K))      //Closed loop should be stable
  //Same as Cl=P22/.K; spec(Cl('A'))
  s=poly(0,'s')
  lqg2stan(1/(s+2),eye(2,2),eye(2,2))

SEE ALSO
  lqg, lqr, lqe, obscont, h_inf, augment, fstabst, feedback

AUTHOR
  F.D.