File: obscont.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (72 lines) | stat: -rw-r--r-- 2,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

obscont(1)                     Scilab Function                     obscont(1)
NAME
  obscont - observer based controller

CALLING SEQUENCE
  [K]=obscont(P,Kc,Kf)
  [J,r]=obscont(P,Kc,Kf)

PARAMETERS

  P         : syslin list (nominal plant) in state-space form, continuous or
            discrete time

  Kc        : real matrix, (full state) controller gain

  Kf        : real matrix, filter gain

  K         : syslin list (controller)

  J         : syslin list (extended controller)

  r         : 1x2 row vector

DESCRIPTION
  obscont  returns the observer-based controller associated with a nominal
  plant P with matrices [A,B,C,D] (syslin list).

  The full-state control gain is Kc and the filter gain is Kf.  These gains
  can be computed, for example, by pole placement.

  A+B*Kc and A+Kf*C are (usually) assumed stable.

  K is a state-space representation of the compensator  K: y->u  in:

   xdot = A x + B u,  y=C x + D u, zdot= (A + Kf C)z -Kf y +B u, u=Kc z

  K is a linear system (syslin list) with matrices given by:
   K=[A+B*Kc+Kf*C+Kf*D*Kc,Kf,-Kc].

  The closed loop feedback system  Cl: v ->y  with (negative) feedback K
  (i.e. y = P u, u = v - K y, or xdot = A x + B u, y = C x + D u, zdot = (A +
  Kf C) z - Kf y + B u, u = v -F z) is given by Cl = P/.(-K)

  The poles of Cl ( spec(cl('A')) ) are located at the eigenvalues of A+B*Kc
  and A+Kf*C.

  Invoked with two output arguments obscont returns a (square) linear system
  K which parametrizes all the stabilizing feedbacks via a LFT.

  Let Q an arbitrary stable linear system of dimension r(2)xr(1) i.e. number
  of inputs x number of outputs in P.  Then any stabilizing controller K for
  P can be expressed as K=lft(J,r,Q). The controller which corresponds to Q=0
  is K=J(1:nu,1:ny) (this K is returned by K=obscont(P,Kc,Kf)).  r is size(P)
  i.e the vector [number of outputs, number of inputs];

EXAMPLE
  ny=2;nu=3;nx=4;P=ssrand(ny,nu,nx);[A,B,C,D]=abcd(P);
  Kc=-ppol(A,B,[-1,-1,-1,-1]);  //Controller gain
  Kf=-ppol(A',C',[-2,-2,-2,-2]);Kf=Kf';    //Observer gain
  cl=P/.(-obscont(P,Kc,Kf));spec(cl('A'))   //closed loop system
  [J,r]=obscont(P,Kc,Kf);
  Q=ssrand(nu,ny,3);Q('A')=Q('A')-(maxi(real(spec(Q('A'))))+0.5)*eye(Q('A'))
  //Q is a stable parameter
  K=lft(J,r,Q);
  spec(h_cl(P,K))  // closed-loop A matrix (should be stable);

SEE ALSO
  ppol, lqg, lqr, lqe, h_inf, lft, syslin, feedback, observer

AUTHOR
  F.D.