File: observer.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (72 lines) | stat: -rw-r--r-- 2,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

onserver(1)                    Scilab Function                    onserver(1)
NAME
  observer - observer design

CALLING SEQUENCE
  Obs=observer(Sys,J)
  [Obs,U,m]=observer(Sys [,flag,alfa])

PARAMETERS

  Sys       : syslin list (linear system)

  J         : nx x ny constant matrix (output injection matrix)

  flag      : character strings ('pp' or 'st' (default))

  alfa      : location of closed-loop poles (optional parameter, default=-1)

  Obs       : linear system (syslin list), the observer

  U         : orthogonal matrix (see dt_ility)

  m         : integer (dimension of unstable unobservable (st)  or unobserv-
            able (pp) subspace)

DESCRIPTION
  Obs=observer(Sys,J) returns the observer Obs=syslin(td,A+J*C,[B+J*D,-
  J],eye(A)) obtained from Sys by a J output injection. (td is the time
  domain of Sys).  More generally, observer returns in Obs an observer for
  the observable part of linear system Sys: dotx=A x + Bu, y=Cx + Du
  represented by a syslin list.  Sys has nx state variables, nu inputs and ny
  outputs.  Obs is a linear system with matrices [Ao,Bo,Identity], where Ao
  is no x no, Bo is no x (nu+ny),  Co is no x no and no=nx-m.

  Input to Obs is [u,y] and output of Obs is:

  xhat=estimate of x modulo unobservable subsp. (case flag='pp') or

  xhat=estimate of x modulo unstable unobservable subsp. (case flag='st')

  case flag='st': z=H*x can be estimated with stable observer iff
  H*U(:,1:m)=0 and assignable poles of the observer are set to
  alfa(1),alfa(2),...

  case flag='pp': z=H*x can be estimated with given error spectrum iff
  H*U(:,1:m)=0 all poles of the observer are assigned and set to
  alfa(1),alfa(2),...

  If H satifies the constraint: H*U(:,1:m)=0  (ker(H) contains unobs-subsp.
  of Sys) one has H*U=[0,H2] and the observer for z=H*x is H2*Obs with
  H2=H*U(:,m+1:nx) i.e. Co, the C-matrix of the observer for H*x, is Co=H2.

  In the particular case where the pair (A,C) of Sys is observable, one has
  m=0 and the linear system U*Obs (resp.  H*U*Obs) is an observer for x
  (resp. Hx). The error spectrum is alpha(1),alpha(2),...,alpha(nx).
EXAMPLE
  nx=5;nu=1;ny=1;un=3;us=2;Sys=ssrand(ny,nu,nx,list('dt',us,us,un));
  //nx=5 states, nu=1 input, ny=1 output,
  //un=3 unobservable states, us=2 of them unstable.
  [Obs,U,m]=observer(Sys);  //Stable observer (default)
  W=U';H=W(m+1:nx,:);[A,B,C,D]=abcd(Sys);  //H*U=[0,eye(no,no)];
  Sys2=ss2tf(syslin('c',A,B,H))  //Transfer u-->z
  Idu=eye(nu,nu);Sys3=ss2tf(H*U(:,m+1:$)*Obs*[Idu;Sys])
  //Transfer u-->[u;y=Sys*u]-->Obs-->xhat-->HUxhat=zhat  i.e. u-->output of Obs
  //this transfer must equal Sys2, the u-->z transfer  (H2=eye).

SEE ALSO
  dt_ility, unobs, stabil

AUTHOR
  F.D.