1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
.TH svplot 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
svplot - singular-value sigma-plot
.SH CALLING SEQUENCE
.nf
[SVM]=svplot(sl,[w])
.fi
.SH PARAMETERS
.TP
sl
: \fVsyslin\fR list (continuous, discrete or sampled system)
.TP
w
: real vector (optional parameter)
.SH DESCRIPTION
computes for the system \fVsl=(A,B,C,D)\fR
the singular values of its transfer function matrix:
.nf
G(jw) = C(jw*I-A)B^-1+D
or
G(exp(jw)) = C(exp(jw)*I-A)B^-1+D
or
G(exp(jwT)) = C(exp(jw*T)*I-A)B^-1+D
.fi
evaluated over the frequency range specified by \fVw\fR. (T is the sampling
period, \fVT=sl('dt')\fR for sampled systems).
.LP
\fVsl\fR is a \fVsyslin\fR list representing the system
\fV[A,B,C,D]\fR in state-space form. \fVsl\fR can be continous or
discrete time or sampled system.
.LP
The \fVi\fR-th column of the output matrix \fVSVM\fR contains the singular
values of \fVG\fR for the \fVi\fR-th frequency value \fVw(i)\fR.
.nf
SVM = svplot(sl)
.fi
is equivalent to
.nf
SVM = svplot(sl,logspace(-3,3)) (continuous)
.fi
.nf
SVM = svplot(sl,logspace(-3,%pi)) (discrete)
.fi
.SH EXAMPLE
.nf
x=logspace(-3,3);
y=svplot(ssrand(2,2,4));
xbasc();plot2d1("oln",x',20*log(y')/log(10));
xgrid(12)
xtitle("Singular values plot","(Rd/sec)", "Db");
.fi
.SH AUTHOR
F.D
|