File: cdfbin.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (46 lines) | stat: -rw-r--r-- 1,682 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

cdfbin(1)                      Scilab Function                      cdfbin(1)
NAME
  cdfbin - cumulative distribution function Binomial distribution

CALLING SEQUENCE
  [P,Q]=cdfbin("PQ",S,Xn,Pr,Ompr)
  [S]=cdfbin("S",Xn,Pr,Ompr,P,Q)
  [Xn]=cdfbin("Xn",Pr,Ompr,P,Q,S)
  [Pr,Ompr]=cdfbin("PrOmpr",P,Q,S,Xn)

PARAMETERS

  P,Q,S,Xn,Pr,Ompr
            : six real vectors of the same size.

  P,Q (Q=1-P)
            : The cumulation from 0 to S of the binomial distribution.  (Pro-
            bablility of S or fewer successes in XN trials each with proba-
            bility of success PR.) Input range: [0,1].

  S         : The number of successes observed.  Input range: [0, XN] Search
            range: [0, XN]

  Xn        : The number of binomial trials.  Input range: (0, +infinity).
            Search range: [1E-300, 1E300]

  Pr,Ompr (Ompr=1-Pr)
            : The probability of success in each binomial trial.  Input
            range: [0,1].  Search range: [0,1]

DESCRIPTION
  Calculates any one parameter of the binomial distribution given values for
  the others.

  Formula  26.5.24    of   Abramowitz  and    Stegun,  Handbook   of
  Mathematical   Functions (1966) is   used  to reduce the  binomial distri-
  bution  to  the  cumulative incomplete    beta distribution.

  Computation of other parameters involve a seach for a value that produces
  the desired  value  of P.   The search relies  on  the monotinicity of P
  with the other parameter.

  From DCDFLIB: Library of Fortran Routines for Cumulative Distribution Func-
  tions, Inverses, and Other Parameters (February, 1994) Barry W. Brown,
  James Lovato and Kathy Russell. The University of Texas.