File: cdfnbn.man

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (68 lines) | stat: -rw-r--r-- 2,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
.TH cdfnbn 1 "Dec 1997" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
cdfnbn - cumulative distribution function  negative binomial distribution 
.SH CALLING SEQUENCE
.nf
[P,Q]=cdfnbn("PQ",S,Xn,Pr,Ompr)
[S]=cdfnbn("S",Xn,Pr,Ompr,P,Q)
[Xn]=cdfnbn("Xn",Pr,Ompr,P,Q,S)
[Pr,Ompr]=cdfnbn("PrOmpr",P,Q,S,Xn)
.fi 
.SH PARAMETERS
.TP 10
P,Q,S,Xn,Pr,Ompr
: six real vectors of the same size.
.TP
P,Q (Q=1-P)
: The cumulation from 0 to S of the  negative
binomial distribution.
Input range: [0,1].
.TP
S 
: The upper limit of cumulation of the binomial distribution.
There are F or fewer failures before the XNth success.
Input range: [0, +infinity).
Search range: [0, 1E300]
.TP
Xn
:   The number of successes.
Input range: [0, +infinity).
Search range: [0, 1E300]
.TP
Pr
:   The probability of success in each binomial trial.
Input range: [0,1].
Search range: [0,1].
.TP
Ompr
:   1-PR
Input range: [0,1].
Search range: [0,1]
PR + OMPR = 1.0 
.SH DESCRIPTION
Calculates any one parameter of the negative binomial
distribution given values for the others.
.LP
The  cumulative  negative   binomial  distribution  returns  the
probability that there  will be  F or fewer failures before  the
XNth success in binomial trials each of which has probability of
success PR.
.LP
The individual term of the negative binomial is the probability of
S failures before XN successes and is
Choose( S, XN+S-1 ) * PR^(XN) * (1-PR)^S
.LP
Formula   26.5.26   of   Abramowitz  and  Stegun,  Handbook   of
Mathematical Functions (1966) is used  to  reduce calculation of
the cumulative distribution  function to that of  an  incomplete
beta.
.LP
Computation of other parameters involve a seach for a value that
produces  the desired  value  of P.   The search relies  on  the
monotinicity of P with the other parameter.
.LP
From DCDFLIB: Library of Fortran Routines for Cumulative Distribution
Functions, Inverses, and Other Parameters (February, 1994)
Barry W. Brown, James Lovato and Kathy Russell. The University of
Texas.