File: cdfnor.cat

package info (click to toggle)
scilab 2.4-1
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 55,196 kB
  • ctags: 38,019
  • sloc: ansic: 231,970; fortran: 148,976; tcl: 7,099; makefile: 4,585; sh: 2,978; csh: 154; cpp: 101; asm: 39; sed: 5
file content (52 lines) | stat: -rw-r--r-- 1,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

cdfnor(1)                      Scilab Function                      cdfnor(1)
NAME
  cdfnor - cumulative distribution function normal distribution

CALLING SEQUENCE
  [P,Q]=cdfnor("PQ",X,Mean,Std)
  [X]=cdfnor("X",Mean,Std,P,Q)
  [Mean]=cdfnor("Mean",Std,P,Q,X)
  [Std]=cdfnor("Std",P,Q,X,Mean)

PARAMETERS

  P,Q,X,Mean,Std
            : six real vectors of the same size.

  P,Q (Q=1-P)
            : The integral from -infinity to X of the normal density.  Input
            range: (0,1].

  X         :Upper limit of integration of the normal-density.  Input range:
            ( -infinity, +infinity)

  Mean      :  The mean of the normal density.  Input range: (-infinity,
            +infinity)

  Sd        :  Standard Deviation of the normal density.  Input range: (0,
            +infinity).

DESCRIPTION
  Calculates any one parameter of the normal distribution given values for
  the others.

  A slightly modified version of ANORM from Cody, W.D. (1993). "ALGORITHM
  715: SPECFUN - A Portabel FORTRAN Package of Special Function Routines and
  Test Drivers" acm Transactions on Mathematical Software. 19, 22-32.  is
  used to calulate the  cumulative standard normal distribution.

  The rational functions from pages  90-95  of Kennedy and Gentle, Statisti-
  cal  Computing,  Marcel  Dekker, NY,  1980 are  used  as starting values to
  Newton's Iterations which compute the inverse standard normal.  Therefore
  no  searches  are necessary for  any parameter.

  For X < -15, the asymptotic expansion for the normal is used  as the start-
  ing value in finding the inverse standard normal.  This is formula 26.2.12
  of Abramowitz and Stegun.

  The normal density is proportional to exp( - 0.5 * (( X - MEAN)/SD)**2)

  From DCDFLIB: Library of Fortran Routines for Cumulative Distribution Func-
  tions, Inverses, and Other Parameters (February, 1994) Barry W. Brown,
  James Lovato and Kathy Russell. The University of Texas.