1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
.TH bloc2ss 1 "April 1993" "Scilab Group" "Scilab Function"
.so ../sci.an
.SH NAME
bloc2ss - block-diagram to state-space conversion
.SH CALLING SEQUENCE
.nf
[sl]=bloc2ss(blocd)
.fi
.SH PARAMETERS
.TP 10
blocd
: list
.TP 10
sl
: list
.SH DESCRIPTION
Given a block-diagram representation of a linear system
\fVbloc2ss\fR converts this representation to a state-space
linear system.
The first element of the list \fVblocd\fR must be the string \fV'blocd'\fR.
Each other element of this list is itself a list of one
the following types :
.nf
list('transfer','name_of_linear_system')
.fi
.nf
list('link','name_of_link',
[number_of_upstream_box,upstream_box_port],
[downstream_box_1,downstream_box_1_portnumber],
[downstream_box_2,downstream_box_2_portnumber],
...)
.fi
The strings \fV'transfer'\fR and \fV'links'\fR are keywords which
indicate the type of element in the block diagram.
Case 1 : the second parameter of the list is a character string which
may refer (for a possible further evaluation)
to the Scilab name of a linear system given
in state-space representation (\fVsyslin\fR list) or in transfer
form (matrix of rationals).
.LP
To each transfer block is associated an integer.
To each input and output of a transfer block is also
associated its number, an integer (see examples)
Case 2 : the second kind of element in a block-diagram representation
is a link.
A link links one output of a block represented by the pair
\fV[number_of_upstream_box,upstream_box_port]\fR, to different
inputs of other blocks. Each such input is represented by
the pair \fV[downstream_box_i,downstream_box_i_portnumber]\fR.
.LP
The different elements of a block-diagram can be defined
in an arbitrary order.
For example
.LP
[1] \fVS1*S2\fR with unit feedback.
.LP
There are 3 transfers \fVS1\fR (number \fVn_s1=2\fR) , \fVS2\fR (number \fVn_s2=3\fR)
and an adder (number \fVn_add=4\fR) with symbolic transfer
function \fV['1','1']\fR.
.LP
There are 4 links. The first one (named \fV'U'\fR) links the input
(port 0 of fictitious block -1, omitted) to port 1 of the adder.
The second and third one link respectively (output)port 1
of the adder to (input)port 1 of system \fVS1\fR, and
(output)port 1 of \fVS1\fR to (input)port 1 of \fVS2\fR.
The fourth link (named \fV'Y'\fR) links (output)port 1 of \fVS2\fR to
the output (port 0 of fictitious block -1, omitted) and to
(input)port 2 of the adder.
.nf
//Initialization
syst=list('blocd'); l=1;
//
//Systems
l=l+1;n_s1=l;syst(l)=list('transfer','S1'); //System 1
l=l+1;n_s2=l;syst(l)=list('transfer','S2'); //System 2
l=l+1;n_adder=l;syst(l)=list('transfer',['1','1']); //adder
//
//Links
// Inputs -1 --> input 1
l=l+1;syst(l)=list('link','U1',[-1],[n_adder,1]);
// Internal
l=l+1;syst(l)=list('link',' ',[n_adder,1],[n_s1,1]);
l=l+1;syst(l)=list('link',' ',[n_s1,1],[n_s2,1]);
// Outputs // -1 -> output 1
l=l+1;syst(l)=list('link','Y',[n_s2,1],[-1],[n_adder,2]);
.fi
With \fVs=poly(0,'s');S1=1/(s+1);S2=1/s;\fR the result of the evaluation call
\fVsl=bloc2ss(syst);\fR is a state-space representation for
\fV1/(s^2+s-1)\fR.
.HR
[2] LFT example
.nf
//Initialization
syst=list('blocd'); l=1;
//
//System (2x2 blocks plant)
l=l+1;n_s=l;syst(l)=list('transfer',['P11','P12';'P21','P22']);
//
//Controller
l=l+1;n_k=l;syst(l)=list('transfer','k');
//
//Links
l=l+1;syst(l)=list('link','w',[-1],[n_s,1]);
l=l+1;syst(l)=list('link','z',[n_s,1],[-1]);
l=l+1;syst(l)=list('link','u',[n_k,1],[n_s,2]);
l=l+1;syst(l)=list('link','y',[n_s,2],[n_k,1]);
.fi
With
.nf
P=syslin('c',A,B,C,D);
P11=P(1,1);
P12=P(1,2);
P21=P(2,1);
P22=P(2,2);
K=syslin('c',Ak,Bk,Ck,Dk);
.fi
\fVbloc2exp(syst)\fR
returns the evaluation the lft of \fVP\fR
and \fVK\fR.
.fi
.SH SEE ALSO
bloc2exp
.SH AUTHOR
S. S., F. D. (INRIA)
|